博碩士論文 107523022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.140.186.201
姓名 賴韋州(Wei-Chou Lai)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於神經網路之多用戶綠能上鏈無線通訊功率控制研究
(Neural Network-based Power Control for Multiusers Uplink Green Wireless Communications)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來物聯網設備在無線通訊使用率節節攀升,其所造成的能量消耗以及電力需求逐漸增加,能量獵取技術被提出以解決有限電池的電量問題。為了達到最大化的系統通道容量,傳統的凸優化方法受到電池容量和能量獵取時間因果性的限制必須假設系統知道未來所有時刻的能量獵取及通道增益等狀態資訊才能實現傳輸功率控制,這在實際情況下難以達成且具有高計算複雜度。因此本論文提出深度神經網路(Deep Neural Network, DNN)以及捲積神經網路(Convolutional Neural Network , CNN)學習過去能量獵取的傳輸模式來預測未來功率控制值,本文所提之方法在不需要未來能量獵取及通道增益等狀態資訊的情況下,能有效降低複雜度且達到即時應用。
本篇論文中,提出了兩種基於深度神經網路的功率控制方法,用於多用戶上鏈綠能無線通訊系統之功率控制以最大化系統的通道容量。在多用戶環境中,吾人使用凸優化(Convex Optimization)及歷年能量獵取資料產生之最佳功率控制值以及最佳電池狀態作為輸入,再讓多層感知器(Multilayer perceptron, MLP)以及捲積神經網路(Convolutional Neural Network , CNN)學習其輸入/輸出的關係。為了讓兩種神經網路進行學習,皆採用監督式學習,使用加權和最小均方誤差(Weighted-sum MMSE, WMMSE)作為監督式學習的標籤(Label),並且比較兩種方法於最大通道容量效能之差異。模擬結果顯示本論文提出的方法不僅符合實際應用還能大幅降低計算複雜度並且在多用戶應用上都能近似於參考功率控制值的系統通道容量。
摘要(英) In recent years, the utilization rate of wireless communication of IoT devices has been steadily increasing, and the energy consumption and power demand caused by it have gradually increased. Energy harvesting technology has been proposed to solve the problem of limited battery power. In order to achieve the maximum system channel capacity, the traditional convex optimization method is limited by the causality of battery capacity and energy harvesting time. It must be assumed that the system knows the state information of energy harvesting and channel gain at all times in the future to achieve transmission power control. Under the circumstances, it is difficult to achieve and has high computational complexity. Therefore, this paper proposes Deep Neural Network (DNN) and Convolutional Neural Network (CNN) to learn the transmission mode of energy harvesting in the past to predict the future power control value. The method proposed in this paper does not require the future state information, such as energy harvesting and channel gain, it can effectively reduce complexity and achieve real-time applications. In this paper, two power control methods based on neural networks are proposed for power control of multi-user uplink green energy wireless communication systems to maximize the channel capacity. In a multi-user scenario, we use convex optimization and the best power control value generated by energy harvesting data over the years and the best battery state as input, and then let the Multilayer Perceptron (MLP) and convolutional neural network (CNN) learn its input/output relationship. In order to allow the two neural networks to learn, both use supervised learning, using weighted-sum MMSE (WMMSE) as the label, and compare the maximum capacity difference between DNN and CNN. The simulation results show that the method proposed in this paper not only conforms to the actual application, but also greatly reduces the computational complexity and can approximate the system channel capacity of the reference power control value in multi-user applications.
關鍵字(中) ★ 能量獵取
★ 凸優化
★ 深度神經網路
★ 多層感知器
★ 捲積神經網路
★ 加權和最小均方誤差
關鍵字(英) ★ Energy harvesting
★ Convex optimization
★ Deep Neural Networks
★ Multilayer perceptron
★ Convolutional Neural Network
★ Weighted-sum MMSE
論文目次 摘要 ii
Abstract iii
致謝 iv
符號說明 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1研究背景與動機 1
1-2 文獻探討-能量獵取功能的無線通訊系統 4
1-3 文獻探討-深度神經網路 5
第二章 研究理論介紹 6
2-1能量獵取(Energy harvesting) 6
2-2 通道容量(Channel capacity) 7
2-3 凸優化(Convex optimization) 7
2-4 深度神經網路-多層感知器(Multilayer perceptron) 8
2-5 深度神經網路-捲積神經網路(Convolutional Neural Network) 9
2-6 集中式網路(Centralized network) 11
第三章 多用戶能量獵取集中式無線通訊系統架構 12
3-1 太陽能能量獵取大數據 12
3-2 多用戶系統模型 13
3-3多用戶通道容量最佳化問題 14
3-4路徑損耗(Path Loss)於通道係數的影響 15
3-5加權和最小均方誤差演算法 16
3-6 多層感知器之上行鍊路功率控制網路 17
3-7 位置感知之平行上鍊功率控制網路 21
3-8 捲積神經網路之上行鍊路功率控制網路 23
第四章 模擬結果 27
4-1多層感知器之上鍊功率控制模擬結果 30
4-2 捲積神經網路之上鍊功率控制模擬結果 35
4-3 時間複雜度比較 38
第五章 結論 40
附錄A He初始化 41
附錄B 加權和均方誤差配方過程 42
附錄C 加權和最小均方誤差等效證明 43
參考文獻 45
參考文獻 [1] A. Kumar, K. Singh, and D. Bhattacharya, “Green communication and wireless networking,” in Proc. ICGCE, pp. 49-52, 2013.
[2] I. U. Ramirez and N. A. B. Tello, “A survey of challenges in green wireless communications research,” in Proc. ICMEAE, pp. 197-200, 2014.
[3] P. Gandotra, and R. K. Jha, “Next generation cellular networks and green communication,” in Proc. COMSNETS, pp. 522-524, 2018.
[4] J. Lu, H. Okada, T. Itoh, R. Maeda, and T. Harada, “Towards the world smallest wireless sensor nodes with low power consumption for ‘Green’ sensor networks,” in Proc. IEEE ICSENS, pp. 1-4, 2013.
[5] B. Atwood, B. Warneke, and K. S. J. Pister, “Smart dust mote forerunners,” in Proc. IEEE ICMS, pp. 357-360, 2001.
[6] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli, and M. C. Govil, “A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection,” in Proc. IEEE ICACCA, pp. 1-6, 2016.
[7] M. Tacca, P. Monti, and A. Fumagalli, “Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2519-2529, Jul. 2007.
[8] S. Reddy and C. R. Murthy, “Profile-based load scheduling in wireless energy harvesting sensors for data rate maximization,” in Proc. IEEE ICC, pp. 1-5, 2010.
[9] N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, Jul. 2013.
[10] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sep. 2011.
[11] B. Medepally and N. B. Mehta, “Voluntary energy harvesting relays and selection in cooperative wireless networks,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3543-3553, Nov. 2010.
[12] C. K. Ho, P. D. Khoa, and P. C. Ming, “Markovian models for harvested energy in wireless communications,” in Proc. IEEE ICCS, pp. 311-315, 2010.
[13] M.-L. Ku, Y. Chen and K. J. Ray Liu, “Data-driven stochastic models and policies for energy harvesting sensor communications,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505-1520, Aug. 2015.
[14] Hsin-Hung Tsai, “Design and simulation of cooperative transmission policies for two-user energy harvesting networks”, Master Thesis, National Central University, 2015.
[15] H. Ye, G. Y. Li, and B.-H. Juang, “Power of learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114-117, Sep. 2017.
[16] N. Krishna Prakash and D. Prasanna Vadana, “Machine learning based residential energy management system,” in Proc. IEEE ICCIC, pp. 684-687, 2017
[17] W. Lee, M. Kim, D.-H. Cho, “Deep power control: Transmit power control scheme based on convolutional neural network,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1276-1279, Jun. 2018.
[18] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, ‘‘Learning-based computation offloading for IoT devices with energy harvesting,’’ IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930-1941, Feb. 2019.
[19] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to Optimize: Training Deep Neural Networks for Interference Management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438-5453, Oct. 2018.
[20] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless scheduling,” IEEE J. Sel. Areas Commun, vol. 37, no. 6, pp. 1248-1261, 2019.
[21] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “A graph neural network approach for scalable wireless power control,” arXiv:1907.08487, 2019.
[22] M. K. Sharma, A. Zappone, M. Debbah and M. Assaad, "Deep learning based online power control for large energy harvesting networks", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 8429-8433, May 2019.
[23] T. Zhang and S. Mao, “Energy-efficient power control in wireless networks with spatial deep neural networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 111– 124, Mar. 2019.
[24] B. Atwood, B. Warneke, and K. S. J. Pister, “Smart Dust mote forerunners,” in Proc. IEEE ICMS’ 01, pp. 357–360, Jan. 2001.
[25] K. Y. Huang, L. C. Shen, K. J. Chen, and M. C. Huang, “Multilayer perceptron with genetic algorithm for well log data inversion,” in Proc. IEEE IGARSS, pp. 21-26, July. 2013.
[26] D. Guo, S. Shamai, and S.Verdu, “Mutual information and minimum mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1261-1282, Apr. 2005.
[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv: 1502.01852v1, pp. 1-11, Feb. 2015.
[28] S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv: 1502.03167v3, pp. 1-11, Mar. 2015.
[29] D. Mishkin, and J. Matas, “All you need is a good init,” arXiv: 1511.06422v7, pp. 1-13, Feb. 2016.
[30] K. He and J. Sun. Convolutional neural networks at constrained time cost. arXiv:1412.1710, 2014.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2021-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明