博碩士論文 108456019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.145.191.22
姓名 陳鼎麟(Ting-Ling Chen)  查詢紙本館藏   畢業系所 工業管理研究所在職專班
論文名稱 應用六標準差設計強化車用零組件可靠度-以絕緣閘極雙極性電晶體為例
相關論文
★ 應用MFM 與PPM 監控協同設計之執行流程★ 應用DSM與DRFT於汽車電子之協同開發流程
★ 一協同設計專案團隊組成方法- 以安全監視器產品為例★ 應用認知工程開發全球化光纖通訊系統
★ 羽絨產業策略規劃-應用品質機能展開分析法★ 重電業協同專案管理績效之研究-以變電所統包工程為例
★ 以屬性導向新產品開發之流程塑模與分析– 以醫療器材產業為案例★ 以品質機能展開法應用於主管管理職能之建構
★ 應用參考模型以及流程建模改善供應鏈績效-以投影機產業為例★ 協同產品開發之流程管理 - 以汽車零件為例
★ 配電系統之高壓電纜接頭供應商評選★ 應用品質機能展開於產品開發之流程分析-以刀鋒式伺服器為例
★ 實施精實六標準差改進製程良率-以機頂盒表面黏著技術為例★ 太陽能模組產業之決策營運研究
★ 新產品開發階段導入替代料之流程建模及潛在風險分析★ 應用實驗設計研發PET複合膜及改善厚膜翹曲問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統的汽車產業是一個極為封閉的環境,車廠已有固定的供應鏈配合,汽車又是與生命財產有關的產業,產品設計的不良或可靠度的缺陷都會造成車廠巨大的賠償,因此車廠都不會輕易更換已經認證的設計、製程及供應商。也正因為如此,新產品在開發設計時,應該要以「Design for Reliability」取代「Time to Market」的思維。為了因應未來
ADAS系統及新能源車的崛起,快速設計與設計變更的頻率劇增是必然的趨勢,若要縮短新產品開發、設計及試作時間及以達到量產的規模,其中關鍵除了設計的能力與製造的效率之外,更重要的是新產品品質的確保。本研究將考慮藉由六標準差設計(Design For Six Sigma, DFSS)主軸,結合DMADV (Define,Measure,Analyze,Design,verify)、失效模式與效應分析(Failure Mode and Effects Analysis, FMEA)與特性要因圖分析(Cause & Effect Analysis)等方法探討如何提高新產品開發管理的設計品質及產品可靠度,同時縮短產品研發時程及降低研發成本等。希望透過解決IGBT模組的熱阻 (Thermal resistance)問題為案例,說明達到持續改善(Continuous Improvement)及防錯(Fool Proof)等功效,進而減少量產後的變異與浪費,以確保產品品質及服務,能夠達到顧客期望,並提升企業的競爭力。
摘要(英) The traditional automobile industry is an extremely closed environment. The car factory has a fixed supply chain, and the automobile is an industry related to life and property. Poor product design or reliability defects will cause huge compensation to the car factory, so the car factory does not Will easily replace the certified design, manufacturing process and supplier. It is precisely because of this that when new products are developed and designed, the thinking of "Time to Market" should be replaced with "Design for Reliability". In order to cope with the rise of ADAS systems and new energy vehicles in the future, the rapid increase in the frequency of rapid design and design changes is an inevitable trend. To shorten the time for new product
development, design and trial production and to achieve mass production, the key is to design In addition to capacity and manufacturing efficiency, more important is the assurance of new product quality.

This study will consider design for six sigma, combined with DMADV (Define, Measure, Analyze, Design, Verify), failure mode and effects analysis and cause & effect analysis, purpose to discuss how to improve the design quality of new product development management, while shortening the product development timeline and reducing R&D costs. It is hoped that in the development process, through solving the thermal resistance problem of IGBT modules as a case, it can show that continuous improvement and fool proof can be achieved, thereby
reducing the variation and waste after mass production. Ensure product quality and service, meet customer expectations, and enhance the competitiveness of the company.
關鍵字(中) ★ 汽車產業
★ 新產品開發
★ 六標準差設計
★ 特性要因圖
★ 失效模式與效應分析
關鍵字(英) ★ automobile industry
★ new product development
★ design for six sigma
★ cause & effect diagram
★ failure mode and effect analysis
論文目次 目錄

中 文 摘 要 ............................................................................................................................................. i
Abstract .................................................................................................................................................. ii
目錄 ......................................................................................................................................................... iv
圖目錄 ..................................................................................................................................................... vi
表目錄 ................................................................................................................................................... viii
第一章 緒論 ....................................................................................................................................... 7
1-1 研究背景與動機 ........................................................................................................... 7
1-2 研究目的 ....................................................................................................................... 8
1-3 研究流程 ....................................................................................................................... 9
第二章 文獻探討 ............................................................................................................................. 10
2-1 先期產品品質規劃(Advanced Product Quality Planning, APQP) ................... 10
2-1-1 產品計劃與專案定義(Plan and Program Define) ........................................... 11
2-1-2 產品的設計與開發(Product Design and Development Verification) ............ 11
2-1-3 製程設計和開發(Process Design and Development Verification) ................. 12
2-1-4 產品與製程驗證(Product and Process Validation) ........................................ 12
2-1-5 反饋評估和糾正措施(Feedback Assessment and Corrective Action) .......... 13
2-2 車用電子的可靠度驗證 ............................................................................................. 13
2-2-1 AEC-Q104 可靠度驗證流程 .................................................................................. 14
2-2-2 AEC-Q104 驗證測試方法 ..................................................................................... 16
第三章 研究方法 ............................................................................................................................. 28
3-1 研究方法 .................................................................................................................... 283-2 研究架構 ..................................................................................................................... 28
3-3 DFSS 六標準差設計 ................................................................................................... 29
3-3-1 六標準差設計 .......................................................................................................... 29
3-3-2 DMAIC 的方法應用 ............................................................................................... 30
3-3-3 DMADV 的方法應用 .............................................................................................. 32
3-4 預定進度甘特圖 (Gantt Chart) ................................................................................ 33
3-5 失效模式與效應分析 (Failure mode and effects analysis, FMEA) ....................... 36
3-6 管制計畫 (Control Plan) ........................................................................................... 39
3.7 循環式品質管理 (Plan-Do-Check-Act, PDCA) ....................................................... 41
第四章 實例應用 ............................................................................................................................. 45
4-1 汽車電子及絕緣閘極雙極性電晶體(IGBT)簡介 .................................................. 45
4-2 新產品開發計劃(New Product Development Gantt Chart) ................................ 47
4-3 特性要因圖分析案例(Cause & Effect Analysis) ................................................... 53
4-4 失效模式與效應分析案例(FMEA) ........................................................................ 55
第五章 結論與建議 ......................................................................................................................... 58
5-1 結論 ............................................................................................................................... 58

5-2 未來研究方向與建議 ................................................................................................... 59

參考文獻 ............................................................................................................................................... 60
英文文獻 ............................................................................................................................... 60
參考文獻 英文文獻

[1] Kouroush Jenab, Cuibing Wu, Saeid Moslehpour (2018). “Design for six sigma: A
review”, Growing Science
[2] Hoerl, R. (2001). “Six Sigma Black Belts: What do they need to know?” Journal of
Quality Technology.
[3] Jerome Kaspar, Dirk Baehre, Michael Vielhaber, (2016). Material selection based on
a product and production engineering integration framework
[4] Robisom Damasceno Calado (2013). Applying Business Diagnostic Method in
Companies Certified by the Quality Management System ISO TS 16949
[5] Jerome Kaspar, Michael Vielhaber. (2016). Cross-Component Systematic Approach
for Lightweight and Material-Oriented Design
[6] Azianti Ismail, Liu Qiang. (2014). ISO 26262 automotive functional safety: issues and
challenges
[7] Roger. W. Hoerl. (2001). Six sigma black belts: What do they need to know?
[8] Wael Alaghbari, Basel Sultani and Adeeb A. A. Mohammed. (2021). Using Six Sigma
(DMADV) Method to Improve Site Rollout Projects in MTN-Yemen Company
[9] Miklós Hajdu*, Gabriella Szenik, Gábor Bardócz. (2012). Application of Evaluation
Lines in Project Planning and Control
[10] DR.K.A. Mohamed Junaid, Dr.D.Sudha, Sabari.L.Umamaheswari. (2019). Analysis of
Peril and Mitigation in Engineering Education for Viable Augmentation.
[11] Jakkula Balaraju∗, Mandela Govinda Raj, Chivukula Suryanarayana Murthy. (2019).
Fuzzy-FMEA risk evaluation approach for LHD machine – A case study [12] AIAG Scott Gray, VDA Jochen Pfeufer. (2018) New global FMEA standard – FMEA
alignment AIAG and VDA
[13] Edly F. Ramly, Hood Atan. (2020) FMEA AIAG-VDA - Commentary and Case Study
[14] Krafcik, Doros & Malikova. (2017). A single center analysis of factors influencing
study start-up timeline in clinical trials
[15] Boeing AQS D1-9000-1. (1998) Advance quality system tool
[16] Bernhard Wolf, Simon Kind, Rainer Stark. (2020). Smart Hybrid Prototyping in
manual automotive assembly validation
[17] M. Bobreka, M. Sokovicb. (2005) Implementation of APQP-concept in design of QMS
[18] AEC - Q104 (2017). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION
FOR MULTICHIP MODULES (MCM) IN AUTOMOTIVE APPLICATIONS
[19] ZVEI - Zentralverband Elektrotechnik- und. (2013). Handbook for Robustness
Validation of Automotive Electrical/Electronic Modules
[20] Richard Oshiro. (2018). Fundamentals of AEC-Q100 : What“Automotive Qualified”
Really Means
[21] AEC - Q104 (2017). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION
FOR MULTICHIP MODULES (MCM) IN AUTOMOTIVE APPLICATIONS
指導教授 高信培(Hsing-Pei Kao) 審核日期 2021-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明