博碩士論文 108426002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.21.171.92
姓名 陳鈴云(Ling-Yun Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於自動編碼器-長短期記憶方法 在數據不平衡下的異常檢測
(Anomaly Detection under Data Imbalance Based on the Autoencoder-LSTM Method)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著智慧製造的發展,許多機器會安裝感測元件,來做異常監控。而現有的異常檢測方法有許多問題點,例如:大量的誤報、參數調整困難、需要具有的正常與異常標記數據集等等,其中最常見的問題之一為資料不平衡。由於異常是很少見的,因此,容易出現正常資料的數量遠遠大於異常資料的數量。這個問題對於異常檢測造成很大的影響,不僅會影響模型的訓練效果,連帶產生不準確的分析結果。
時間序列性的資料指的是資料來源會隨著時間持續更新,例如:感測元件。另外,如果有大量數據,並且很難通過手動提取特徵空間來學習模式。透過深度學習模型將數據轉換為新的特徵空間來學習特徵空間,可以區分正常行為和異常行為。目前有許多研究發現使用無監督學習技術的自動編碼器。由於它具有通過卷積神經處理空間數據以檢測異常行為的能力,因此常被使用。不論是在圖像處理,分類問題和自然語言處理方面都有深度學習模型的研究。然而,在所研究領域中,用於發現異常的深度學習模型仍然是一個尚未探索的領域。
面對處理資料不平衡之問題,本研究提出使用自動編碼器的pre-training概念。由於自動編碼器是一種無監督式學習的神經網路。因此,它在訓練模型的過程中,自動編碼器會試著找出最好的權重來使得資訊可以盡量完整還原回去。因此,透過編碼器與解碼器來重建時間序列。搭配長短期記憶網路能學習長序列數據的能力,使其適合於時間序列預測或異常檢測。經過訓練的基於自動編碼器-長短期記憶網路可以重建時間序列的數據,神經網絡可以有效地預測週期性的時間序列數據。因此,本研究的目標為使用自動編碼器-長短期記憶網路解決資料不平衡的問題,使得模型訓練結果表現能有效檢測出異常資料,並且提供解決資料不平衡分類問題的新角度。
摘要(英) With the development of smart manufacturing, many machines will be equipped with sensors to anomaly detection. However, anomaly detection has many problems, such as a large number of false positives, difficulty in parameter adjustment, required labeled normal and abnormal data, etc. One of the most common problems is data imbalance. This problem has a big impact on anomaly detection. Not only affecting the training of the model, but also inaccurate analysis results.
Time-series data means data will continue updating, such as sensor. In addition, if there is a large amount of data, and it is difficult to learn the pattern by manually extracting the feature space. Through the deep learning model to transform the data into a new feature space to learn the feature space. There are many studies that have found autoencoder that use unsupervised learning techniques. Because it has the ability to process spatial data through convolutional nerves to detect abnormal behaviors. Deep learning apply in image, text and classification. However, in this research is still an unexplored field.
This study proposes the concept of pre-training using autoencoder to dealing with data imbalance. Because autoencoder is an unsupervised learning neural network. Therefore, the autoencoder will try to find the best weight to training model. Therefore, the time series is reconstructed through the encoder and decoder. With the ability of long and LSTM to learn long-term data. It is suitable for time-series forecasting or anomaly detection. The trained Autoencoder-LSTM model can reconstruct time series data, and the neural network can effectively predict periodic time series data. Therefore, the goal of our research is using an autoencoder-long short-term memory network to solve the data imbalance. Let the model performance can effectively detect abnormal data and provide a new perspective to solve the data imbalance classification problem.
關鍵字(中) ★ 資料不平衡
★ 自動編碼器
★ 長短期記憶網路
★ 異常檢測
關鍵字(英) ★ Imbalance Data
★ Autoencoder
★ LSTM
★ Anomaly Detection
論文目次 中文摘要 i
Abstract ii
Contents iii
Contents of Figures v
Contents of Tables vi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Research Objectives 5
Chapter 2 Literature Review 7
2.1 Imbalance Data 7
2.2 Autoencoder 11
2.3 LSTM 13
Chapter 3 Methodology 20
3.1 Problem description 20
3.2 Autoencoder 21
3.3 LSTM 22
3.3.1 Feature Scaling 25
3.3.2 Activation Function 25
3.3.3 Loss Function 27
3.3.4 Optimizer 27
3.4 Autoencoder-LSTM 29
3.5 Evaluation Metrics 34
Chapter 4 Experiment 38
4.1 Data preprocessing 38
4.2 Comparison of imbalance ratio 39
4.3 Comparison of model 42
4.4 Evaluation 50
Chapter 5 Conclusion 52
Reference 57
參考文獻 Ahmad, S., et al. (2017). "Unsupervised real-time anomaly detection for streaming data." Neurocomputing 262: 134-147.
[2] Ali, A., et al. (2015). "Classification with class imbalance problem a review." Advance Soft Compute Appl.
[3] Barua, S., et al. (2014). "MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning." IEEE Transactions on Knowledge and Data Engineering 26(2): 405-425.
[4] Buda, T. S., et al. (2018). DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection. Advances in Knowledge Discovery and Data Mining: 577-588.
[5] Chalapathy, R. and S. Chawla (2019). "Deep learning for anomaly detection A survey.".
[6] Chawla, N. V., et al. (2002). "SMOTE Synthetic Minority Over-sampling Technique." Journal of Artificial Intelligence Research.
[7] Deng, J., et al. (2014). "Autoencoder-based Unsupervised Domain Adaptation for Speech Emotion Recognition." IEEE.
[8] FAHIM, M. and A. SILLITTI (2019). "Anomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review." IEEE Access.
[9] Foxt, A. J. (1972). "Outliers in Time Series.".
[10] Galar, M., et al. (2012). "A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42(4): 463-484.
[11] Goutte, C. and E. Gaussier (2005). "A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation."
[12] Hochreiter, S. and J. u. Schmidhuber (1997). "Long short-term memory."
[13] Kumar, P., et al. (2021). "Classification of Imbalanced Data:Review of Methods and Applications." IOP Conference Series: Materials Science and Engineering 1099(1)
[14] Laptev, N., et al. (2017). "Time-series extreme event forecasting with neural networks at uber." International Conference on Machine Learning.
[15] Lee, T., et al. (2016). "Performance of Machine Learning Algorithms for Class-Imbalanced Process Fault Detection Problems." IEEE Transactions on Semiconductor Manufacturing 29(4): 436-445.
[16] Malhotra, P., et al. (2016). "LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection."
[17] Ng, W. W. Y., et al. (2016). "Dual autoencoders features for imbalance classification problem." Pattern Recognition 60: 875-889.
[18] Nguyen, H. D., et al. (2021). "Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management." International Journal of Information Management 57.
[19] Nguyen, H. M., et al. (2009). "Borderline over-sampling for imbalanced data classification." IEEE.
[20] Ogunmolu, O. P., et al. (2016). "Nonlinear Systems Identification Using Deep Dynamic Neural Networks.".
[21] Ordonez, F. J. and D. Roggen (2016). "Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition." Sensors (Basel) 16(1).
[22] Pereira, J. and M. Silveira (2018). Unsupervised Anomaly Detection in Energy Time Series Data Using Variational Recurrent Autoencoders with Attention. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA): 1275-1282.
[23] Principi, E., et al. (2019). "Unsupervised electric motor fault detection by using deep autoencoders." IEEE/CAA Journal of Automatica Sinica 6(2): 441-451.
[24] Rifai, S., et al. (2011). "Contractive Auto-Encoders Explicit Invariance During Feature Extraction." Proceedings of the 28 th International Conference on Machine Learning.
[25] Saumya, S. and J. P. Singh (2020). "Spam review detection using LSTM autoencoder: an unsupervised approach." Electronic Commerce Research.
[26] Shao, H., et al. (2017). "A novel deep autoencoder feature learning method for rotating machinery fault diagnosis." Mechanical Systems and Signal Processing 95: 187-204.
[27] Shipmon, D. T., et al. (2017). "Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data.".
[28] Simard, B. and Frasconi (1994). "Learning long-term dependencies with gradient descent is difficult.".
[29] Singh, A. (2017). "Anomaly detection for temporal data using long short-term memory (LSTM)."
[30] Teng, M. (2010). "Anomaly Detection on Time Series." IEEE.
[31] Vincent, P., et al. (2010). "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion." Journal of Machine Learning Research 11: 3371-3408.
[32] Vuttipittayamongkol, P., et al. (2018). Overlap-Based Undersampling for Improving Imbalanced Data Classification. Intelligent Data Engineering and Automated Learning – IDEAL 2018: 689-697.
[33] Zhang, W., et al. (2018). "LSTM-Based Analysis of Industrial IoT Equipment." IEEE Access 6: 23551-23560.
[34] Zheng, L., et al. (2020). "Main Steam Temperature Prediction Modeling Based on Autoencoder and GRU.".
[35] Zhu, L. and N. Laptev (2017). Deep and Confident Prediction for Time Series at Uber. 2017 IEEE International Conference on Data Mining Workshops (ICDMW): 103-110.
指導教授 曾富祥(fu-shiang Tseng) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明