博碩士論文 108426008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.140.198.12
姓名 方詠傑(Yung-Chieh Fang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於揀貨路徑策略之訂單批次化問題探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,網路的蓬勃發展帶動了電子商務市場的崛起,消費者透過網路購物愈來愈普遍,電子商務公司間的競爭也日趨激烈。研究指出電子商務的成功因素有許多,其中之一就是完善的物流服務,消費者對虛擬通路所能提供物流服務的滿意度終將影響其營運績效。沒有良好的物流服務,使產品交付給消費者的期限大大延遲,網路電商是無法獲得消費者的肯定的。做好物流工作有效地降低營運成本,並滿足顧客要求,提高顧客服務水準,是企業迎向二十一世紀如此爆炸性的消費時代永續經營的關鍵要素。
然而物流中心的種種內部作業中,揀貨作業是一種屬於勞力密集且相當耗費成本的活動,揀貨作業的時間佔整體物流作業時間比例大約30~40%。在成本方面,揀貨的人工作業成本佔了物流中心總成本15~20%,而物流中心的揀貨作業則佔了總作業成本約達55%。因此,具備完善的揀貨作業流程,對於物流中心整體運作效率之提升將有決定性之影響。
本研究主要探討物流中心訂單批次化揀取作業的方法,基於4種揀貨路徑提出不同訂單相似係數並以群聚方法進行訂單批次化揀貨,利用揀貨旅行距離績效指標,比較不同揀貨路徑策略下訂單批次化方法之績效。另外,本文將與過往研究所提出的批次化揀貨法則做比較,並提出對未來研究方法的建議,以供實體揀貨中心的揀貨參考依據。並期望能實際應用到現實倉儲環境中,提升揀貨作業之效率。
摘要(英) In recent years, the prosperous development of the Internet has led to the rise of the e-commerce market. It has become more common for consumers to shop online, and competition among e-commerce companies has become increasingly fierce. Research indicates that there are many factors for the success of e-commerce, one of which is complete logistics services. Consumers’ satisfaction with the logistics services provided by virtual shop will finally affect their operational performance. Without good logistics services, the deadline for the delivery of products to consumers is greatly delayed, and online e-commerce companies cannot earn recognition for consumers. Doing a good job in logistics effectively reduces operating costs, satisfies customer requirements, and improves customer service levels. It is the key element for the sustainable operation of enterprises in modern society.
However, among the various internal operations of the Distribution Centre, picking operation is a labor-intensive and cost-intensive activity. The time of picking operation accounts for about 30-40% of the overall logistics operation time. In terms of cost, the labor cost of picking accounts for 15-20% of the total cost of the Distribution Centre, while the picking operations of the Distribution Centre account for about 55% of the total cost of operations. Therefore, having a complete picking operation process will have a decisive impact on the improvement of the overall operational efficiency of the Distribution Centre.
This research mainly discusses the method of order batching operations in Distribution Centre. Based on four picking policies, different order similarity coefficients are proposed, and clustering method is used for order batching. Use the Total Travel Distance of Pickers(TTD)to evaluate the performance of order batching methods under different picking policies. In addition, this research will compare with the order batching method proposed by previous researches, and put forward suggestions for future research methods, for the Distribution Centre’s picking reference basis. It is also expected to be practically applied to the real-life warehousing environment to improve the efficiency of picking operations.
關鍵字(中) ★ 物流中心
★ 揀貨路徑
★ 訂單批次化
關鍵字(英) ★ Distribution Centre
★ Order Picking Route
★ Order Batching
論文目次 目錄 III
圖目錄 VI
表目錄 VIII
第一章 绪論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 研究環境 4
1.5 研究流程與架構 6
第二章 文獻探討 9
2.1 物流 10
2.1.1 物流的定義 10
2.1.2 物流中心 11
2.1.3 現代物流的重要性 13
2.2 訂單揀取(Order Picking) 14
2.2.1 揀貨員的揀貨方式(Order Picking Methods) 14
2.2.2 訂單揀貨問題(Order Picking Problem) 16
2.2.3 訂單批次化(Order Batching) 19
2.3 揀貨路徑策略(Order Picking Route) 25
2.3.1 旅行推銷員問題(Traveling Salesman Problem) 26
2.3.2 揀貨政策(Picking Policies) 28
第三章 研究方法 33
3.1 研究問題說明 33
3.2 方法架構與流程 34
3.3 路徑策略介紹 38
3.3.1 Traversal 路徑策略 38
3.3.2 Return 路徑策略 39
3.3.3 Midpoint 路徑策略 40
3.3.4 Largest Gap 路徑策略 41
3.4 不同路徑策略下之訂單相似係數 42
3.4.1 Traversal路徑策略訂單相似係數 43
3.4.1.1 Traversal路徑策略訂單相似係數TypeⅠ(Hwang and Kim, 2005) 43
3.4.1.2 Traversal路徑策略訂單相似係數Type II 47
3.4.2 Return路徑策略訂單相似係數 53
3.4.2.1 Return路徑策略訂單相似係數TypeⅠ(Hwang and Kim, 2005) 53
3.4.2.2 Return路徑策略訂單相似係數Type Ⅱ 57
3.4.3 Midpoint路徑策略訂單相似係數 63
3.4.3.1 Midpoint路徑策略訂單相似係數TypeⅠ(Hwang and Kim, 2005) 63
3.4.3.2 Midpoint路徑策略訂單相似係數TypeⅡ 68
3.4.4 Largest gap路徑策略訂單相似係數 74
3.5 群聚方法(Clustering algorithm) 80
3.5.1 Single-linkage群聚法 80
3.6 Seed-order(種子訂單)選取法則+Accompanying-order(配合訂單)選取法則 86
3.6.1 Seed-order(種子訂單)選取法則 88
3.6.2 Accompanying-order(配合訂單)選取法則 89
第四章 實驗結果與分析 90
4.1 實驗設計 90
4.1.1 實驗環境 90
4.1.2 儲位擺放比例設計 96
4.1.3 實驗目的與方法 97
4.1.4 實驗因子 98
4.2 績效評估指標 103
4.3 統計分析 103
4.3.1 分析說明 104
4.3.2 在Within-Aisle下各種路徑策略之訂單批次化方法績效表現 104
4.3.2.1 在Within-Aisle下TV訂單批次化方法績效表現 104
4.3.2.2 在Within-Aisle下RT訂單批次化方法績效表現 106
4.3.2.3 在Within-Aisle下MD訂單批次化方法績效表現 108
4.3.2.4 在Within-Aisle下LG訂單批次化方法績效表現 109
4.3.3 在Across-Aisle下各種路徑策略之訂單批次化方法績效表現 110
4.3.3.1 在Across-Aisle下TV訂單批次化方法績效表現 110
4.3.3.2 在Across-Aisle下RT訂單批次化方法績效表現 112
4.3.3.3 在Across-Aisle下MD訂單批次化方法績效表現 114
4.3.3.4 在Across-Aisle下LG訂單批次化方法績效表現 115
4.3.4 在Diagonal下各種路徑策略之訂單批次化方法績效表現 116
4.3.4.1 在Diagonal下TV訂單批次化方法績效表現 116
4.3.4.2 在Diagonal下RT訂單批次化方法績效表現 118
4.3.4.3 在Diagonal下MD訂單批次化方法績效表現 120
4.3.4.4 在Diagonal下LG訂單批次化方法績效表現 121
4.3.5 在Surround下各種路徑策略之訂單批次化方法績效表現 122
4.3.5.1 在Surround下TV訂單批次化方法績效表現 122
4.3.5.2 在Surround下RT訂單批次化方法績效表現 124
4.3.5.3 在Surround下MD訂單批次化方法績效表現 126
4.3.5.4 在Surround下LG訂單批次化方法績效表現 128
4.3.6 儲位設計因子與路徑策略之訂單批次化方法因子之交互作用 129
4.3.6.1 儲位設計因子與TV之訂單批次化方法因子之交互作用 129
4.3.6.2 儲位設計因子與RT之訂單批次化方法因子之交互作用 134
4.3.6.3 儲位設計因子與MD之訂單批次化方法因子之交互作用 137
4.3.6.4 儲位設計因子與LG之訂單批次化方法因子之交互作用 141
4.4 實驗結論 145
第五章 結論與建議 150
5.1 研究結論 150
5.2 後續研究建議 151
參考文獻 153
中文部分 153
英文部分 154
參考文獻 中文部分
1. 林鴻鈞(2006),揀貨中心揀貨策略與訂單選取之研究,中央大學工業管理研所,碩士論文。
2. 邱耀弘(2008),以分群為基礎之訂單批量化方法探討。中央大學工業管理研究所學位論文。
3. 陳志賢(1998),物流供應鍊之整合度研究,黎明學報,第十一卷,第一期。
4. 陳姿穎(2010),在具有 RFID 的分區揀貨倉庫環境下之揀貨問題探討。中央大學工業管理研究所學位論文。
5. 黃元欣(2008),B2C電子商務之物流服務品質研究,中央大學企業管理研究所,碩士論文。
6. 黃壬癸(2001),以揀貨量為基礎之倉儲儲位配置建構與評估,國防管理學院後勤管理所碩士學位論文。
7. 董福慶、陳明德(1995),物流中心揀貨作業,經濟部商業司。
8. 趙廷偉(2012)具語音引導揀貨系統之揀貨作業的執行與績效。中央大學工業管理研究所學位論文。
9. 黎永松(2007),電子商務對物流業的衝擊與影響之研究。商學學報 15,219-251.

英文部分
10. Aboelfotoh, A., Singh, M., & Suer, G. (2019). Order Batching Optimization for Warehouses with Cluster-Picking. Procedia Manufacturing, 39, 1464-1473.
11. Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52(4), 965-981.
12. Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research.
13. Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different paperless picking systems. Industrial Management & Data Systems.
14. Bolten, E. F. (1997). Managing time and space in the modern warehouse: With ready-to-use forms, checklist & documentation. Amacom Books.
15. Cano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A. (2017). An evaluation of picking routing policies to improve warehouse efficiency. International Journal of Industrial Engineering and Management, 8(4), 229-238.
16. Chen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm for two order pickers with congestion consideration. Computers & Industrial Engineering, 66(1), 77-85.
17. Chen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408.
18. Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
19. Choi, I. C., Kim, S. I., & Kim, H. S. (2003). A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem. Computers & Operations Research, 30(5), 773-786.
20. Choy, K. L., Ho, G. T., & Lee, C. K. H. (2017). A RFID-based storage assignment system for enhancing the efficiency of order picking. Journal of intelligent manufacturing, 28(1), 111-129.
21. Ciesielski, M. (2009). Instruments of management of supply chains, Polskie Wydawnictwo Ekonomiczne, Warsaw.
22. Dekker, R., De Koster, M. B. M., Roodbergen, K. J., & Van Kalleveen, H. (2004). Improving order-picking response time at Ankor′s warehouse. Interfaces, 34(4), 303-313.
23. eMarketer. (2015). Worldwide Retail Ecommerce Sales: Emarketer’s Update Estimates And Forecast Through 2019, eMarketer, Inc., New York.
24. Europlatforms, E. E. I. G. (2004). Logistics centres directions for use. A report by EUROPLATFORMS EEIG.
25. Gademann, A. J. R. M., van den Berg, J. P., & van der Hoff, H. H. (2001). An order batching algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions, 33(5), 385-398.
26. Giannikas, V., Lu, W., Robertson, B., & McFarlane, D. (2017). An interventionist strategy for warehouse order picking: Evidence from two case studies. International Journal of Production Economics, 189, 63-76.
27. Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., & Duarte, A. (2018, October). New VNS variants for the online order batching problem. In International Conference on Variable Neighborhood Search (pp. 89-100). Springer, Cham.
28. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3), 539-549.
29. Henn, S. (2015). Order batching and sequencing for the minimization of the total tardiness in picker-to-part warehouses. Flexible Services and Manufacturing Journal, 27(1), 86-114.
30. Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching problem in manual order picking systems. European Journal of Operational Research, 222(3), 484-494.
31. Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G. (2010). Metaheuristics for the order batching problem in manual order picking systems. Business Research, 3(1), 82-105.
32. Ho, Y. C., & Liu, C. F. (2005). A design methodology for converting a regular warehouse into a zone-picking warehouse. Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
33. Ho, Y. C., Su, T. S., & Shi, Z. B. (2008). Order-batching methods for an order-picking warehouse with two cross aisles. Computers & Industrial Engineering, 55(2), 321-347.
34. Hwang, H. (2001, January). Routing policies in an order picking operation.
35. Hwang, H. S., & Cho, G. S. (2006). A performance evaluation model for order picking warehouse design. Computers & Industrial Engineering, 51(2), 335-342.
36. Hwang, H., & Kim, D. G. (2005). Order-batching heuristics based on cluster analysis in a low-level picker-to-part warehousing system. International Journal of Production Research, 43(17), 3657-3670.
37. Hwang, H., & Lee, M. K. (1988). Order batching algorithms for a man-on-board automated storage and retrieval system. Engineering Costs and Production Economics, 13(4), 285-294.
38. Hwang, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
39. II, C. G. P. (2000). An evaluation of order picking policies for mail order companies. Production and operations management, 9(4), 319-335.
40. Kim, B. I., Heragu, S. S., Graves, R. J., & Onge, A. S. (2003). Clustering-based order-picking sequence algorithm for an automated warehouse. International Journal of Production Research, 41(15), 3445-3460.
41. Le-Duc, T., & De Koster, R. M. (2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
42. Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821-5841.
43. Li, J., Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447-461.
44. Li, Y., & Li, Y. (2018, June). E-commerce order batching algorithm based on association rule mining in the era of big data. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 1934-1939). IEEE.
45. Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
46. Madani, A., Batta, R., & Karwan, M. (2019). The balancing traveling salesman problem: application to warehouse order picking. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 1-28.
47. Masae, M., Glock, C. H., & Vichitkunakorn, P. (2020). Optimal order picker routing in the chevron warehouse. IISE Transactions, 52(6), 665-687.
48. Matusiak, M., de Koster, R., & Saarinen, J. (2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263(3), 888-899.
49. Menéndez, B., Pardo, E. G., Alonso-Ayuso, A., Molina, E., & Duarte, A. (2017). Variable neighborhood search strategies for the order batching problem. Computers & Operations Research, 78, 500-512.
50. Menendez, B., Pardo, E. G., Sánchez‐Oro, J., & Duarte, A. (2017). Parallel variable neighborhood search for the min–max order batching problem. International Transactions in Operational Research, 24(3), 635-662.
51. Pan, J. C. H., Shih, P. H., & Wu, M. H. (2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57, 238-248.
52. Pedrielli, G., Vinsensius, A., Chew, E. P., Lee, L. H., Duri, A., & Li, H. (2016, December). Hybrid order picking strategies for fashion E-commerce warehouse systems. In 2016 Winter Simulation Conference (WSC) (pp. 2250-2261). IEEE.
53. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
54. Petersen, C. G., Aase, G. R., & Heiser, D. R. (2004). Improving order‐picking performance through the implementation of class‐based storage. International Journal of Physical Distribution & Logistics Management.
55. Pinto, A. R. F., & Nagano, M. S. (2019). An approach for the solution to order batching and sequencing in picking systems. Production Engineering, 13(3-4), 325-341.
56. Rimienė, K., & Grundey, D. (2007). Logistics centre concept through evolution and definition. Engineering economics, 54(4).
57. Scholz, A., & Wäscher, G. (2017). Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing. Central European Journal of Operations Research, 25(2), 491-520.
58. Silva, A., Coelho, L. C., Darvish, M., & Renaud, J. (2020). Integrating storage location and order picking problems in warehouse planning. Transportation Research Part E: Logistics and Transportation Review, 140, 102003.
59. Sneath, P. H. (1957). Some thoughts on bacterial classification. Microbiology, 17(1), 184-200.
60. Sneath, P. H. (1957). The application of computers to taxonomy. Microbiology, 17(1), 201-226.
61. The Economist, (2017). There be giants. The Economist, October 28th~November3rd, 2017, 12-14.
62. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
63. Tompkins, J. A., and Smith, J. D., 1998, The Warehouse Management Handbook.
64. Van Gils, T., Caris, A., Ramaekers, K., & Braekers, K. (2019). Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse. European Journal of Operational Research, 277(3), 814-830.
65. Vicente, J. J., Relvas, S., & Barbosa-Póvoa, A. P. (2018). Effective bullwhip metrics for multi-echelon distribution systems under order batching policies with cyclic demand. International Journal of Production Research, 56(4), 1593-1619.
66. Xiang, X., Liu, C., & Miao, L. (2018). Storage assignment and order batching problem in Kiva mobile fulfilment system. Engineering Optimization, 50(11), 1941-1962.
67. Zhang, J., Wang, X., & Huang, K. (2016). Integrated on-line scheduling of order batching and delivery under B2C e-commerce. Computers & Industrial Engineering, 94, 280-289.
68. Zhang, J., Wang, X., & Huang, K. (2018). On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity. Omega, 79, 104-115.
69. Zhang, J., Wang, X., Chan, F. T., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 271-284.
70. Zhao, Q. H., Wang, S. Y., & Lai, K. K. (2007). A partition approach to the inventory/routing problem. European Journal of Operational Research, 177(2), 786-802.
71. Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M. (2018). Picker routing and storage-assignment strategies for precedence-constrained order picking.Computers & Industrial Engineering, 123, 338-347.
72. Žulj, I., Kramer, S., & Schneider, M. (2018). A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem. European Journal of Operational Research, 264(2), 653-664.
73. Żurek, J. (2015). E-Commerce Influence on Changes in Logistics Processes. LogForum, 11(2), 129-138.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2021-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明