博碩士論文 108421042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.22.98.3
姓名 鄭琮翰(Cong-Han Zheng)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 透過多種因子預測隔週登革熱的感染區域
(Predicting infection area of Dengue for next week through a variety of factors)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 因為登革熱需要二次感染才會造成重症的特性,死亡率不高,造成疫情的嚴峻程度較不起眼,但隨著全球暖化,登革熱的分布範圍漸漸改變;過去國內外對於登革熱的研究中,最常見的是以氣候因子做登革熱的預測,再來是氣候因子結合社會因子與氣候因子結合地理因子,目前並無將三種因子結合的研究,故本研究結合三種因子,與臺灣登革熱的病例資料,以人口數量劃分的二級區域做為顆粒度,利用 Random Forest 與XGBoost 建立登革熱隔週感染區域預測模型。最後實驗結果 Random Forest 與 XGBoost的 ROC/AUC 皆高於 93%,且 Recall 皆高於 80%,依照此結果,政府單位可以更精準的去判別需要噴藥撲滅的登革熱可能感染區域,進而降低人力成本與醫療資源。
摘要(英) Death rate of dengue fever is low, because dengue fever become severe illness only when second infection happened. However, global warming is getting server recently, which make the infection distribution of dengue fever different. Common method of previous studies use climate factors combined with social or geographic factors to predict dengue fever. However, recent study did not use combination of these three factors into dengue fever prediction. We proposed a method that combines these three factors with data of Taiwanese dengue fever and uses the secondary area divided by the population as the granularity. Random Forest and XGBoost are used for prediction model of weekly dengue fever infection area.

Experimental results showed that the ROC/AUC of Random Forest and XGBoost are both higher than 93% The Recall rate is higher than 80%. With the result, government can determine which area should do disinfection process to reduce the infection rate of dengue infection. Because of accurate prediction and disinfection process, the personnel cost can be reduced and it can prevent waste of medical recourse.
關鍵字(中) ★ 登革熱
★ 不平衡資料
★ 隨機森林
★ 極限梯度提升
關鍵字(英) ★ Dengue
★ Random Forest
★ XGBoost,
★ imbalanced data
論文目次 目 錄
摘要 i
Abstract ii
目 錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 3
1-4 研究架構 5
第二章 文獻探討 6
2-1 臺灣登革熱之研究 6
2-2 機器學習於登革熱之研究 7
2-3 Random Forest 9
2-4 XGBoost 10
第三章 研究方法 11
3-1 研究流程 11
3-2 研究特徵 12
3-2-1 登革熱病例相關特徵 12
3-2-2 氣候因子相關特徵 13
3-2-3 社會因子相關特徵 14
3-2-4 地理因子相關特徵 15
3-3 Random Forest 16
3-4 XGBOOST 17
3-5 模型評分介紹 20
3-5-1 混淆矩陣(Confusion Matrix) 21
3-5-2 ROC/AUC 22
3-5-3 F1-Score 23
第四章 研究實驗 24
4-1 資料來源與蒐集 24
4-1-1 登革熱感染資料 24
4-1-2 氣候因子資料 24
4-1-3 社會因子與地理因子資料 24
4-2 資料前處理 25
4-2-1 資料標準化 25
4-2-2 資料切割 26
4-2-3 資料平衡 26
4-3 模型參數調整 28
4-3-1 Random Forest 參數調整 28
4-3-2 XGBoost參數調整 30
4-4 實驗結果與分析 32
4-4-1 氣候因子建立模型預測結果 32
4-4-2 氣候因子與社會因子建立模型預測結果 33
4-4-3 氣候因子與地理因子建立模型預測結果 33
4-4-4 結合三種因子之預測模型結果 34
4-5 模型重要特徵 37
4-5-1 Random Forest 模型重要特徵 38
4-5-2 XGBoost 模型重要特徵 39
4-6 調整後模型結果與分析 40
第五章 結論 41
5-1 研究結論 41
5-2 研究限制與未來研究建議 43
參考文獻 44
參考文獻 參考文獻
〔1〕鍾瑋, et al., "登革熱疫苗研發進展". 2015. 31(8): p. 186-195.
〔2〕WHO, "Dengue and severe dengue". 2020.
〔3〕nidss. 衛生福利部疾病管制署傳染病統計資料. 2015.
〔4〕Rückert, C., et al., "Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes". Nature Communications, 2017. 8(1): p. 15412.
〔5〕Tiwari, L., et al., "COVID-19 with dengue shock syndrome in a child: coinfection or cross-reactivity?". BMJ Case Reports, 2020. 13(12): p. e239315.
〔6〕Deng, S.-Q., et al., "A Review on Dengue Vaccine Development". Vaccines, 2020. 8(1): p. 63.
〔7〕Xu, Z., et al., "Projecting the future of dengue under climate change scenarios: Progress, uncertainties and research needs". PLOS Neglected Tropical Diseases, 2020. 14(3): p. e0008118.
〔8〕Zhao, N., et al., "Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia". PLOS Neglected Tropical Diseases, 2020. 14(9): p. e0008056.
〔9〕Francisco, M.E., et al., Dengue Disease Dynamics are Modulated by the Combined Influence of Precipitation and Landscapes: A Machine Learning-based Approach. 2020, Cold Spring Harbor Laboratory.
〔10〕Akashi, K., "A dengue epidemic in the Tainan District of Taiwan in 1931". 1932. 31: p. 767.
〔11〕Chen, W.-J., "Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis". Biomedical Journal, 2018. 41(5): p. 283-289.
〔12〕Hsu, J.C., et al., "Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015". International Journal of Infectious Diseases, 2017. 54: p. 43-49.
〔13〕李杰, "登革熱". 2019. 30(3): p. 204-212.
〔14〕Wang, W.-H., et al., "An epidemiological survey of the current status of Zika and the immune interaction between dengue and Zika infection in Southern Taiwan". International Journal of Infectious Diseases, 2020. 93: p. 151-159.
〔15〕 Ho, L.-L., et al., "Taiwan′s Travel and Border Health Measures in Response to Zika". Health Security, 2017. 15(2): p. 185-191.
〔16〕Stolerman, L.M., et al., "Forecasting dengue fever in Brazil: An assessment of climate conditions". PLOS ONE, 2019. 14(8): p. e0220106.
〔17〕Salim, N.A.M., et al., "Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques". Scientific Reports, 2021. 11(1).
〔18〕Anno, S., et al., "Spatiotemporal dengue fever hotspots associated with climatic factors in Taiwan including outbreak predictions based on machine-learning". Geospatial Health, 2019. 14(2).
〔19〕Guo, P., et al., "Developing a dengue forecast model using machine learning: A case study in China". PLOS Neglected Tropical Diseases, 2017. 11(10): p. e0005973.
〔20〕Huang, S.-H., 應用地理探勘技術預測登革熱傳播區域. 2020, National Central University.
〔21〕Fawagreh, K., et al., "Random forests: from early developments to recent advancements". Systems Science & Control Engineering, 2014. 2(1): p. 602-609.
〔22〕Peng, W., et al., "Asymptotic distributions and rates of convergence for random forests and other resampled ensemble learners". 2019.
〔23〕Subasi, A., et al., Diagnosis of Chronic Kidney Disease by Using Random Forest, in IFMBE Proceedings. 2017, Springer Singapore. p. 589-594.
〔24〕Worachartcheewan, A., et al., "Predicting Metabolic Syndrome Using the Random Forest Method". The Scientific World Journal, 2015. 2015: p. 1-10.
〔25〕Lebedev, A.V., et al., "Random Forest ensembles for detection and prediction of Alzheimer′s disease with a good between-cohort robustness". NeuroImage: Clinical, 2014. 6: p. 115-125.
〔26〕Chen, T. and C. Guestrin. XGBoost. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. ACM.
〔27〕Ajit, P.J.a., "Prediction of employee turnover in organizations using machine learning algorithms". 2016. 4(5): p. C5.
〔28〕Zhang, Y., et al., "Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women". Journal of Affective Disorders, 2021. 279: p. 1-8.
〔29〕Wang, L., et al., "Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model". Healthcare, 2020. 8(3): p. 247.
〔30〕Jury, M.R., "Climate influence on dengue epidemics in Puerto Rico". International Journal of Environmental Health Research, 2008. 18(5): p. 323-334.
〔31〕Lambrechts, L., et al., "Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti". Proceedings of the National Academy of Sciences, 2011. 108(18): p. 7460-7465.
〔32〕余化龍, 溫., 潘宗毅,蔡坤憲,簡龍璋,徐葦茵,林遠見, "氣候變遷下台灣地區登革熱空間時間分布預測模型建立研究". 2012.
〔33〕Valverde-Albacete, F.J. and C. Peláez-Moreno, "100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox". PLoS ONE, 2014. 9(1): p. e84217.
〔34〕Singh, D. and B. Singh, "Investigating the impact of data normalization on classification performance". Applied Soft Computing, 2020. 97: p. 105524.
〔35〕Padmaja, T.M., et al. An unbalanced data classification model using hybrid sampling technique for fraud detection. in International Conference on Pattern Recognition and Machine Intelligence. 2007. Springer.
〔36〕Luengo, J., et al., "Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling". 2011. 15(10): p. 1909-1936.
指導教授 許秉瑜 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明