博碩士論文 108523034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.139.79.59
姓名 陳浡胤(Po-Yin Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 高軌道衛星與低軌道衛星在線干擾之頻譜資源分配機制
(Spectrum Resource Allocation Mechanism for Handling GEO and LEO Satellite Inline Interference)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第五代行動通訊 (5G) 之大規模機器通訊 (massive machine type communications,mMTC),預期會有數十億之物聯網 (IoT) 設備需連接上網,由於衛星系統擁有訊號覆蓋範圍大且對於地面基礎設施依賴較小等優勢,因此部屬低軌道 (Low Earth Orbit,LEO) 衛星為未來無線通訊發展之重點項目。當 LEO 數量增加時,其系統與地球同步 (Geosynchronous Equatorial Orbit,GEO) 衛星系統在線干擾 (inline interference) 會是一嚴重之問題,為使 GEO 與 LEO 衛星網路共存,上述兩種衛星網路之頻譜資源分配為必要條件。
目前相關研究大多分是藉由功率控制技術以減輕在線干擾之問題,而頻譜資源分配之機制則是直接分配獨立資源給 GEO 衛星系統,然而,此方法將大幅降低頻譜使用效能。本研究考慮 LEO 衛星系統具有多波束 (multiple beams) 與圓極化 (circular polarization) 之特性,使用波束跳躍 (beam hopping) 降低不同波束間之干擾,藉由統計 LEO 衛星系統使用之頻率,針對 GEO 衛星系統之設備設計八種不同之頻譜資源分配機制,並將八種機制各自建立一跳頻表 (frequency hopping table),使 GEO 衛星系統之設備根據該表進行跳頻,以降低兩套衛星系統之在線干擾。並使用全頻率複用 (Full Frequency Reuse),提升衛星系統之傳輸效能。此外,本文將八種頻譜資源分配機制進行模擬,探討各機制之效能以及其對於 LEO、GEO 衛星系統之公平性。
摘要(英) Massive machine type communications (mMTC) of the fifth-generation mobile networks (5G). It will also embody connections to billions of Internet of Things (IoT) objects. Thanks to satellite systems, including larger radio coverage and less reliance on the ground station., so the deployment of Low Earth Orbit (LEO) satellites is a key project for the development of future radio communications. When the number of LEOs increases, inline interference between its system and the Geosynchronous Equatorial Orbit (GEO) satellite system will be a serious problem. In order for GEO and LEO satellite networks to coexist, one of the above two satellite networks. The allocation of spectrum resources becomes a requisite...
At present, most of the related researches use power control technology to solve the problem of satellite inline interference, and the spectrum resource allocation mechanism is to directly allocate independent resources to the GEO satellite system. However, this method will greatly reduce the efficiency of spectrum usage. This study considers that the LEO satellite system has the characteristics of multiple beams and circular polarization. It uses beam hopping to reduce the interference between different beams. By statistics the frequencies used by the LEO satellite system, eight different spectrum resource allocation mechanisms are designed for the equipment of the GEO satellite system, and a frequency hopping table is established for each of the eight mechanisms. Such that the equipment of the GEO satellite system performs frequency hopping according to the table to reduce the inline interference of the two satellite systems. And use Full Frequency Reuse to improve the transmission performance of the satellite system. In addition, this article simulates eight spectrum resource allocation mechanisms to discuss the effectiveness of each mechanism and its fairness to LEO and GEO satellite systems.
關鍵字(中) ★ 第五代行動通訊 (5G)
★ 衛星網路
★ 波束跳躍
★ 全頻率複用
關鍵字(英) ★ fifth generation mobile networks (5G)
★ satellite network
★ beam hopping
★ beam hopping
★  Full Frequency Reuse
論文目次 中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
Chapter 1. INTRODUCTION 1
Chapter 2. RELATED WORK 4
2.1 Comparison of Different NTN 4
2.2 Earth fixed vs. Earth moving cells in NTN LEO 5
2.3 Support of circular polarization 7
2.4 Frequency reuse factor 8
Chapter 3. PROPOSED MECHANISMS 10
3.1 Frequency Hopping Mechanisms 10
3.2 Fixed Frequency Hopping Mechanisms 12
3.3 Random Frequency Hopping Mechanisms with Duplication 13
3.4 Random Frequency Hopping Mechanisms without Duplication 13
3.5 LEO Favor Frequency Hopping Mechanisms 13
3.6 GEO Favor Frequency Hopping Mechanisms 15
3.7 Greedy Frequency Hopping Mechanisms 16
3.8 Optimal Frequency Hopping Mechanisms with Duplication 17
3.9 Optimal Frequency Hopping Mechanisms without Duplication 18
Chapter 4. PERFORMANCE EVALUATION 19
4.1 Frequency hopping sequence combination 19
4.2 Simulation Result 21
Chapter 5. FUTURE WORK 28
Chapter 6. CONCLUSIONS 30
REFERENCES 31
參考文獻 [1] T. Canada, "Telesat Ka-band NGSO constellation FCC filing SAT-PDR-20161115-00108," 2018.
[2] W. S. Limited, "OneWeb Ka-band NGSO constellation FCC filing SAT-LOI-20160428-00041," 2018.
[3] S. E. Holdings, "LLC, SpaceX Ka-band NGSO constellation FCC filing SAT-LOA-2016111500118," 2018.
[4] 3GPP TR 38.821, “Solutions for NR to Support Non-Terrestrial Networks (NTN), ”V16.0.0, Jan 2020.
[5] 3GPP TS 38.913, “Study on scenarios and requirements for next generation access technologies,”V15.0.0, Jul 2018.
[6] F. Rinaldi, H.-L. Ma¨att ¨ anen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. ¨ Koucheryavy, G. Araniti, “Non-Terrestrial Networks in 5G & Beyond: A Survey,” in IEEE ACCESS, Sept. 2020.
[7] 3GPP TR 38.811, “Study on New Radio (NR) to Support Non Terrestrial Networks,” V15.0.0, Oct. 2019.
[8] Y. Vasavada, Architectures for next generation high throughput satellite systems, Int J Satell Commun Network, March 2016.
[9] S. Zhang, D. Zhu, and Y. Wang, “A survey on space-aerial-terrestrial integrated 5G networks,” Computer Networks, vol. 174, pp. 107-212, 2020.
[10] Casbaba , High throughput satellite networks, Whitepaper. (2012) 1–16.
[11] D. Christopoulos, S. K. Sharma, S. Chatzinotas, J. Krause, and B. Ottersten, “Coordinated multibeam satellite co-location: The dual satellite paradigm,” arXiv preprint arXiv: 1503.06981v1, 2015.
[12] Sharma SK, Chatzinotas S, Ottersten B. Cognitive beamhopping for spectral coexistence of multibeam satellites, Future Network and Mobile Summit: Lesbon, Portugal; pp 1–10, 2013.
[13] S. K. Sharma, S. Chatzinotas, B. Ottersten, “Cognitive beamhopping for spectral coexistence of multibeam satellites,” Int J Satell Commun Network, March 2014.
[14] S. K. Sharma, S. Chatzinotas, and et al, “In-line Interference MitigationTechniques for Spectral Coexistence of GEO and NGEO Satellites,” Int J Satell Commun Network., vol. 34, no. 1, pp. 11-39, Feb. 2016.
[15] Glenn Robb. (2019, Jan)” Circularly Polarized Antennas Explained, Without The Math” Retrieved from http://ael.cbnu.ac.kr/lectures/graduate/%EC%A0%84%ED%8C%8C%EA%B3%B5%ED%95%99%EC%8B%A4%ED%97%98/2019-1/lecture-notes/05-antenna-axial-ratio-measurement/05b-antenna-polarization-measurement.pdf
[16] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared systems,” tech. rep., Digital Equipment Corporation, DEC-TR-301, 1984
[17] Nicolas Cassiau, Jean-Michel Houssin, Gosan Noh, Bang Chul Jung, and Jeong Seon Yeom, "Interference Mitigation Techniques," H2020-EUK-815323/5G-ALLSTAR/D3.3, 5G Agile and Flexible Integration of Satellite and Cellular (5G-ALLSTAR) Project, Oct. 2020.
指導教授 許獻聰(Shiann-Tsong Sheu) 審核日期 2021-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明