博碩士論文 108523049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.118.30.253
姓名 陳宗逸(CHEN , TSUNG-YI)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 稀疏碼多重存取的碼本優化研究
(On Codebook Optimization for Sparse Code Multiple Access Communication)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著數據傳輸和應用的發展,正交多重存取( OMA ) 技術不能支持不斷增加的用戶和設備。對更高頻譜效率,大規模連接和更低延遲的要求給現有的移動網絡帶來了巨大壓力。面對這些挑戰,非正交多重存取 ( NOMA ) 可以在5G和無線網絡中實現大規模連接,以非正交方式將資源單位分配給用戶,從而允許多個用戶共享相同的資源單位,提高了系統的頻譜效率,並滿足了對行動網路和物聯網(IoT)不斷增長的需求。本文所使用的稀疏碼多重存取 ( SCMA )為一種典型的NOMA技術。它通過SCMA編碼過程將多維調變和低密度擴頻序列(LDS)相結合,把二進制輸入訊號直接映射為用戶碼本中的稀疏碼字,來獲得多維星座的整形增益( shaping gain )。
但是SCMA對於碼本設計的方法存在多維星座設計複雜度高和擴頻矩陣的選擇等難以確定的問題。因此,本文將碼本設計的步驟拆分為幾個部份,分別進行探討和研究,將複雜的設計明確化,並且利用多維星座的關鍵性能指標(KPI)來選擇最佳設計參數。針對不同通道條件、不同使用者和通道數量的情況下,提出一個在各個步驟中都具有最佳效能的碼本。基本思想是在平均功率固定的情況下,最大化星座點的最小歐幾里得距離和最小乘積距離,並且選擇最大周長值的因子圖,從而獲得比其他論文碼本更好的BER性能。
摘要(英) In recent years, with the development of data transmission and applications, OMA technique cannot support a huge number of users and devices. The requirements for large-scale connectivity, lower latency, and higher spectrum efficiency have put tremendous pressure on mobile networks. In the face of these challenges, non-orthogonal multiple access (NOMA) enables massive connectivity in 5G and wireless networks. NOMA allocates resource elements to users in a non-orthogonal manner, allowing multiple users to share the same resource elements. It improves the spectral efficiency of the system, meeting the needs of the ever-growing demand for mobile Internet and the Internet-of-Things (IoT). Sparse code multiple access (SCMA) is a typical NOMA technology. It combines multi-dimensional modulation and low density spreading (LDS) through SCMA encoding process. It mapped the binary input bits to the sparse code words in the user codebook, and obtained the shaping gain of the multi-dimensional constellation.
However, for the SCMA codebook design method, there are problems that are difficult to determine, such as the high complexity of designing a multi-dimensional constellation and the selection of a spreading matrix. Therefore, the paper divides the steps of codebook design into several parts for discussion and research respectively. Explain the complex design clearly, and use the key performance indicators (KPI) of the multi-dimensional constellation to select the best design parameters. I propose a codebook with the best performance in each step, for different channel conditions, different numbers of users and channels. The basic idea is to maximize the minimum Euclidean distance and the minimum product distance of the constellation point when the average power is fixed, and to select the factor graph of the maximum girth value to obtain better BER performance than other papers codebooks.
關鍵字(中) ★ 非正交多重存取
★ 稀疏碼多重存取
★ 碼本設計
★ 多維星座
★ 信息傳遞演算法
關鍵字(英) ★ NOMA
★ SCMA
★ codebook design
★ Multi-Dimensional Constellation
★ Message Passing Algorithm
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 序論 - 1 -
1.1 研究背景與發展 - 1 -
1.2 研究目的 - 4 -
1.3 論文大綱 - 5 -
第二章 稀疏碼多重存取 ( SCMA ) 介紹 - 6 -
2.1 SCMA 系統架構 - 6 -
2.2 映射矩陣 - 9 -
2.3 信息傳遞演算法 ( Message Passing Algorithm , MPA ) - 10 -
2.3.1 最大後驗機率檢測 ( MAP Detection ) - 10 -
2.3.2 置信度傳播 ( belief propagation ) - 12 -
第三章 SCMA碼本設計 - 15 -
3.1 碼本架構 - 15 -
3.1.1 關鍵績效指標 ( Key Performance Indicator ) - 17 -
3.2 多維母星座 - 20 -
3.2.1 星座圖的選擇 ( 調變方式 ) - 22 -
3.2.2 星座點之間的距離 - 23 -
3.3 星座運算符 - 25 -
3.3.1 相位旋轉角 - 25 -
3.4 因子圖矩陣 - 27 -
3.4.1 因子圖的選擇 - 29 -
3.5 用戶碼本 - 31 -
3.5.1 座標交錯 ( Coordinate Interleaving ) - 32 -
第四章 模擬結果與討論 - 33 -
4.2 星座圖相關 - 35 -
4.2.1 星座圖的選擇 (調變方式) - 35 -
4.2.2 星座點之間的距離 - 39 -
4.2.3 相位旋轉角 - 42 -
4.3 因子圖相關 - 44 -
4.4 座標交錯 ( Coordinate Interleaving ) - 47 -
4.5 總結 - 49 -
第五章 結論 - 51 -
參考文獻 - 52 -
參考文獻 參考文獻

[1] L. Dai, B. Wang, Y.Yuan, S. Han, Chih-Lin I, and Z. Wang, "Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends," IEEE Commun Mag, vol. 53, no. 9, pp. 74 - 81, Sep. 2015.
[2] Y. Liu, Z. Qin, M. Elk a shla n,, "Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo," Proc IEEE Inst Electr Electron Eng, vol. 105, no. 12, pp. 2347 - 2381, Dec. 2017.
[3] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, Chih-Lin I, and H. Vincent Poor, "Application of Non-Orthogonal Multiple Access in LTE and 5G Networks," IEEE Commun Mag, vol. 55, no. 2, pp. 185 - 191, Feb. 2017.
[4] Y. Saito, Y. Kishiyama, A. Benjebbou, T. Nakamura, A. Li, and K. Higuchi, "Non-Orthogonal Multiple Access ( NOMA ) for Cellular Future Radio Access," IEEE 77th Veh. Technol. Mag., pp. 1-5, 6 Jan. 2014.
[5] Fa-Long Luo, Charlie Zhang, Signal Processing for 5G: Algorithms and Implementations, Wiley-IEEE Press, 2016.
[6] "5GNow website," [Online]. Available: http://5gnow.eu..
[7] J. Proakis and M.Salehi, Digital Communications, 5th ed ed., NY: McGraw-Hill, 2008.
[8] L. Yu, P. Fan, D. Cai, and Z. Ma, "Design and Analysis of SCMA Codebook Based on Star-QAM Signaling Constellations," IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10543 - 10553, Nov. 2018.
[9] H. Nikopour and H. Baligh, "Sparse code multiple access," IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun. ( PIMRC ) , p. 332–336, Sept. 2013.
[10] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, "SCMA Codebook Design," IEEE 80th Veh. Technol. Conf. ( VTC Fall ) , pp. 1-5, Sept. 2014.
[11] M. Vameghestahbanati , I. Marsland , R. Gohary and H. Yanikomeroglu, "Multidimensional Constellations for Uplink SCMA Systems—A Comparative Study," IEEE Commun. Surv. Tutor., vol. 21, no. 3, pp. 2169 - 2194, Apr. 2019.
[12] R. Hoshyar, F. P. Wathan, and R. Tafazolli, "Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel," IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1616 - 1626, Mar. 2008.
[13] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product algorithm," IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498 - 519, Feb. 2001.
[14] W. B. Ameur, P. Mary, M. Dumay, J. Hélard, and J. Schwoerer, "Performance study of MPA, Log-MPA and MAX-Log-MPA for an uplink SCMA scenario," IEEE 26th International Conference on Telecommunications ( ICT ) , pp. 411-413, Apr. 2019.
[15] S. Zhang, K. Xiao, B. Xiao, Z. Chen, B. Xia, D. Chen, and S. Ma, "A capacity-based codebook design method for sparse code multiple access systems," IEEE 8th Int. Conf. Wireless Commun. Signal Process. ( WCSP ) , pp. 1-5, Oct. 2016.
[16] M. BekoandR.Dinis, "Designing Good Multi-Dimensional Constellations," IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 221 - 224, Apr. 2012.
[17] E. Biglieri, J.Proakis, and S. Shamai, "Fading channels: information-theoretic and communications aspects," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2619 - 2692, Oct. 1998.
[18] J. Boutros, E. Viterbo, C. Rastello,and J. C. Belfiore, "Good lattice constellations for both Rayleigh fading and Gaussian channels," IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 502 - 518, Mar. 1996.
[19] J. Boutros and E. Viterbo, "Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel," IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453 - 1467, Jul. 1998.
[20] N. Van der Neut, B.T. Maharaj, F.H. De Lange, G. Gonzalez, F. Gregorio and J. Cousseau, "PAPR reduction in FBMC systems using a smart gradient-project active constellation extension method," International Conference on Telecommunications ( ICT ) , pp. 134-139, May. 2014.
[21] J. van de Beek and B. M. Popovic, "Multiple access with low-density signatures," IEEE Global Telecommun. Conf, pp. 1-6, Dec. 2009.
[22] L. Yu, X. Lei, P. Fan and D. Chen, "An optimized design of SCMA codebook based on star-QAM signaling constellations," IEEE Int. Conf. Wireless Commun. Signal Process, pp. 1-5, Oct. 2015.
[23] Y. Xin, Z. Wang and G. B. Giannakis, "Space-time diversity systems based on linear constellation precoding," IEEE Trans. Wireless Commun., vol. 2, no. 2, pp. 294 - 309, Mar. 2003.
[24] S. Herath, N.H. Tran and T. Le-Ngoc, "Rotated Multi-D Constellations in Rayleigh Fading: Mutual Information Improvement and Pragmatic Approach for Near-Capacity Performance in High-Rate Regions," IEEE Trans. Commun., vol. 60, no. 12, pp. 3694 - 3704, Dec. 2012.
[25] Y. Zhou, Q. Yu, W. Meng and C. Li, "SCMA codebook design based on constellation rotation," IEEE Int. Conf. Commun., pp. 1-6, Jul. 2017.
[26] R. Gallager, "Low-density parity-check codes," IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21 - 28, Jan. 1962.
[27] W. W. Peterson and E. J. Weldon Jr, Error-Correcting Codes, Cambridge, MA: MIT Press, Mar. 1972.
[28] M.P.C. Fossorier, "Quasicyclic low-density parity-check codes from circulant permutation matrices," IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788 - 1793, Jul. 2004.
[29] X.Y. Hu, E. Eleftheriou and D.M. Arnold, "Progressive edge-growth Tanner graphs," IEEE GLOBECOM, pp. 1-7, Nov. 2001.
[30] D. Cai, P. Fan, X. Lei, Y. Liu and D. Chen, "Multi-Dimensional SCMA Codebook Design Based on Constellation Rotation and Interleaving," IEEE 83rd Veh. Technol. Conf. ( VTC Spring ) , pp. 1-5, May. 2016.
[31] T. Metkarunchit, "SCMA codebook design base on circular-QAM," Integr. Commun. Navig. Surveillance Conf. ( ICNS ) , pp. 1-22, Apr. 2017.
指導教授 林嘉慶(Lin, Jia-Chin) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明