博碩士論文 108323020 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.223.213.149
姓名 李庭瑋(Ting-Wei Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以物理實驗探討筒倉鳴音的現象
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 本研究探討筒倉顆粒體卸載過程中筒倉鳴音的現象與成因,筒倉鳴音為具有特定頻率的低頻噪音,並在卸載過程中伴隨特徵頻率的振動,稱為筒倉振動。為了重現筒倉鳴音的現象,筒倉系統由上部的筒倉與下部的剛性支撐組成,並利用筒倉底部的出口控制質量流率,實驗用設備包含為直徑101.6mm、152.4mm與216.3mm的不鏽鋼筒倉以及直徑200mm的壓克力筒倉,且筒倉高度均為2m,出口直徑分別為40mm、60mm、80mm與120mm,顆粒體分別為內含硫酸鋇的聚氯乙烯顆粒、內含耐衝擊聚苯乙烯樹脂的聚氯乙烯顆粒以及氧化鋁顆粒,採用三軸加速度計與麥克風量測筒倉壁面上的振動加速度與筒倉附近的聲壓,並對時域訊號的結果進行頻率與相位分析,此外為了釐清筒倉鳴音與共振現象的關聯性,對筒倉系統進行實驗模態分析,研究結果顯示:(1)筒倉振動造成筒倉鳴音的現象,兩者具有一致的特徵頻率;(2)共振現象並非筒倉振動的主因,但可能放大筒倉振動的現象;(3)筒倉振動可能為顆粒體與筒倉壁面間接觸的作用力(摩擦力與徑向力的合力)所致,黏滑效應是由顆粒體與筒倉壁面間的靜動摩擦力的轉換所致;(4)筒倉軸向加速度為正弦波,而徑向加速度與聲壓均為脈衝波,應該是筒倉的徑向振動推擠空氣產生筒倉鳴音的現象; (5)控制出口直徑即可有效地改變筒倉振動的強度與持續時間;(6)在筒倉底部安裝的置入物對筒倉鳴音較無影響。
摘要(英) The purpose of this study is to investigate the phenomenon and causes of silo honking during silo discharging. The silo honking is a low-frequency noise with specific frequency, and it is always accompanied by vibration of characteristic frequency during silo discharging, called silo quake. In order to reproduce the phenomenon of silo honking, the experimental system is composed of an upper silo with various silo diameters and different orifices as well as a lower rigid supporting platform. The silos studied here include stainless steel silos with diameters of 101.6mm, 152.4mm, and 216.3mm, and an acrylic silo with a diameter of 200mm. These silos have a height of 2m. The orifice diameters are 40mm, 60mm, 80mm and 120mm respectively. The granular materials used in the study include two kinds of PVC particles and Al2O3 particles. The three-directional accelerations on silo walls and the sound pressure near the silo were measured using four accelerometers and one microphone, and the frequency and phase of the signals were further analyzed. In order to clarify the relation between silo honking and structural resonance, the experimental modal analysis was also performed. Key findings are highlighted below: (1) Silo quake is responsible for silo honking, both have the same characteristic frequency; (2) Structural resonance is not the main cause of silo quake, but it may amplify the phenomenon of silo quake; (3) The resultant force (friction force and radial force) which the particles exert on silo walls may be the cause of the silo quake; (4) The axial vibration is in the form of sinusoidal wave, while the radial vibration and the sound pressure exist in the form of pulse. The radial vibration of the silo leads to the sound generation, called silo honking; (5) The orifice diameter influences the intensity of silo quake and its duration. (6) The inserts installed on the silo bottom have no effect on the silo honking.
關鍵字(中) ★ 顆粒材料
★ 筒倉模態實驗
★ 筒倉卸載實驗
★ 筒倉鳴音
★ 筒倉振動
★ 筒倉動態分析
關鍵字(英) ★ granular materials
★ silo model experiment
★ silo discharge experiment
★ silo honking
★ silo quake
★ dynamic characteristics
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 筒倉鳴音的成因 1
1-2-2 顆粒與筒倉材料性質對筒倉鳴音的影響 5
1-2-3 抑制筒倉鳴音的相關研究 7
1-3 研究動機與目的 8
1-4 研究架構 8
第二章 研究方法 10
2.1 實驗設置與儀器 10
2.2 信號處理 12
2.3 模態試驗 15
2.4 實驗流程 15
第三章 結果與討論 20
3.1 筒倉實驗模態分析 21
3.1.1 不同充填高度時筒倉的模態振型 21
3.1.2 不同直徑筒倉的頻率響應 23
3.2 筒倉卸載實驗 24
3.2.1 筒倉振動與筒倉鳴音的現象及其重複性 24
3.2.2 不同觀測點上筒倉振動與筒倉鳴音的響應 27
3.2.3 波動於筒倉中的傳播行為 28
3.3 顆粒與筒倉材料對筒倉鳴音的影響 29
3.3.1 筒倉材料對筒倉鳴音的影響 29
3.3.2 顆粒材料對筒倉鳴音的影響 31
3.3.3 筒倉表面性質對筒倉鳴音的影響 32
3.4 不同筒倉尺寸下對筒倉鳴音的影響 34
3.4.1 筒倉比例對筒倉鳴音的影響 34
3.4.2 直徑216.3mm筒倉出口尺寸對筒倉鳴音的影響 35
3.4.3 不同筒倉尺寸與出口尺寸對筒倉鳴音的影響 37
3.5 抑制筒倉鳴音的研究 38
第四章 結論 40
參考文獻 42
附表 42
附圖 49
參考文獻 [1] C.E.S. Philips, Electrical and other properties of sand, Proceedings of the Royal Institution of Great Britain, 19 (1910) 742.
[2] T. Börzsönyi, Z. Kovács, High-speed imaging of traveling waves in a granular material during silo discharge, Phys. Rev. E., 83 (2011) 032301.
[3] W. Katarzyna, P. Elze, V. Nathalie, Slip-stick excitation and travelling waves excite silo honking, EPJ Web Conf., 140 (2017) 10009.
[4] B.K. Muite, S.F. Quinn, S. Sundaresan, K.K. Rao, Silo music and silo quake: granular flow-induced vibration, Powder Technol., 145 (2004) 190-202.
[5] K. Wilde, M. Rucka, J. Tejchman, Silo music — Mechanism of dynamic flow and structure interaction, Powder Technol., 186 (2008) 113-129.
[6] J. Buick, J. Chavez-Sagarnaga, Z. Zhong, J. Ooi, C. Pankaj, D., C. Greated, Investigation of Silo Honking: Slip-Stick Excitation and Wall Vibration, J. Eng. Mech., 131 (2005) 299-307.
[7] J. Chavez-Sagarnaga, J.M. Buick, J.Y. Ooi, D.M. Campbell, C.A. Greated, Frictional properties of pellets and silo wall materials for the investigation of silo honking, PARTEC., (2004).
[8] C. Wensrich, Experimental behaviour of quaking in tall silos, Powder Technol., 127 (2002) 87-94.
[9] K. Wilde, J. Tejchman, M. Rucka, M. Niedostatkiewicz, Experimental and theoretical investigations of silo music, Powder Technol., 198 (2010) 38-48.
[10] J. Tejchman, Technical concept to prevent the silo honking, Powder Technol. 106 (1999) 7-22.
[11] M. Niedostatkiewicz, J. Tejchman, Z. Chaniecki, K. Grudzień, Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors, Chem. Eng. Sci., 64 (2009) 20-30.
[12] A.W. Roberts, Shock loads in silos—the silo quaking problem, Bulk Solids Handl., 16(1) (1996) 59-73.
[13] C.M. Wensrich, A.W. Roberts, The role of slip-stick motion in silo quaking, IMechE Conf., (2000) 143-151.
[14] A.W. Roberts, C.M. Wensrich, Flow dynamics or ‘quaking’ in gravity discharge from silos, Chem. Eng. Sci., 57 (2002) 295-305.
[15] J.M. Buick, Pankaj, J.Y. Ooi, J. Chavez-Sagarnaga, A. Pearce, G. Houghton, Motion of granular particles on the wall of a model silo and the associated wall vibrations, J. Phys. Appl. Phys., 37 (2004) 2751–2760.
[16] M. Niedostatkiewicz, M. Wójcik, J. Tejchman, Application of inserts for suppression of coupled dynamic–acoustic effects during confined granular flow in silos, Adv. Powder Technol., 25 (2014) 398-407.
[17] J. Tejchman, Silo-quake—measurements, a numerical approach and a way for its suppression, Thin-Walled Struct., 31 (1998) 137-158.
[18] M.L. Dhoriyani, K.K. Jonnalagadda, R.K. Kandikatla, K.K. Rao, Silo music: Sound emission during the flow of granular materials through tubes, Powder Technol., 167 (2006) 55-71.
[19] James W. Cooley and John W. Tukey, An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comput., 19 (1965) 297-301.
[20] Nasser Kehtarnavaz, Digital Signal Processing System Design, Chapter 7, Second Edition, University of Texas at Austin, (2008).
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2021-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明