博碩士論文 108426603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.147.73.147
姓名 胡秋艾(Ho Thi Thu Ai)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 結合再生能源與魚菜共生以實現食物永續生產
(Integrating Renewable Energy with Aquaponic Systems to Achieve Sustainable Food Production)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-12-31以後開放)
摘要(中) 摘要
由全球暖化所致的氣溫升高和極端氣候正影響著世界各地,再過往的數十年中,人們已經投入許多努力來抑制這些影響並期望達成永續發展。身為經濟體中的一員面對著全球人口上升和天然資源耗竭的情況,農作栽種及糧食安全成了我們生活中重要的議題。魚菜共生透過魚類與植作所形成的養分循環減少了農藥及肥料的使用,進而形成了一種創新的永續農業經營方式,透過結合再生能源的電力供應則更能將其永續發展性向上提升。利用再生能源結合魚菜共的開發生雖已有部分學者嘗試進行,但實際的成效仍屬有限,即使再生能源對生態、經濟和科技發展皆有所助益,考量到科技應用的高成本及完整生命週期的操作配置,能源的裝置規畫仍須透過完整的評估後方能來實現。
本研究透過分析氣象數據及太陽輻射、風速、能源需求和溫室構造等能源相關因素建立能源混成模型,在實驗規劃時間內依據能源之變動需求及各供應來源之不同特性,以最大化太陽能及風力發電量為目標,利用混合整數規劃來找尋整體能源混成系統的最佳太陽能光電陣列規模、風機數量及儲能設備容量。所述之數學規劃將透過在越南富國島上經營農場的成功魚菜共生案例作執行驗證,依循實務的解決方案提升再生能源的供給與儲能效率,並進而使魚菜共生結合太陽能及風力發電來達成更長遠的永續發展為本研究之主要貢獻。本文之主要貢獻包括提高可再生能源服務和儲存效率的現實解決方案,使得魚菜共生在整合太陽能與風能方面更具永續性。並且藉由可再生能源和傳統能源之間的平衡比例,本研究以最小的年度成本決定了最佳混合能源系統規模。因此,農民或投資者可以評估他們每年能夠承受的投資額。同時,碳稅代表環境因素,較高的單位碳稅將會影響溫室氣體的排放量並激勵更多可再生能源的使用。而為了達到永續魚菜共生系統,上述的發現不只是本研究的主要結果,亦指出了可再生能源在未來需要克服儲存成本的負擔,期望其可降低價格,以促進在整個系統中實現100%的可再生能源使用。
摘要(英) Abstract
Rising temperatures and extreme weather events are passing around the world as the result of global warming. During the decades, people have implemented many efforts to mitigate these impacts and achieve sustainable development. Be the parts of the economic sector, agricultural cultivation and food security have become emergent issues because of the growing population and exhaustion of natural resources. Aquaponics is innovative in sustainable agricultural cultivation, in which fish and plants create the nutrient cycle to mitigate sewage and fertilizers usage. Enhancing the sustainability of aquaponics encourages the integration of renewable energy (RE) to power the entire system. Scholars have started designing and assessing RE applications in aquaponics, but their contributions are still not much. Although RE benefits ecology, economy, and technology development, energy capacity planning requires a comprehensive evaluation because of the high investment cost and long-time operation.
This research analyzes meteorology data and related energy issues such as solar radiation, wind speed, power demand, and greenhouse structure to model the hybrid energy system (HES). In this context, the objective is to optimize electricity generation from solar and wind energy and adapt to the changing power demand and energy sources during the planning period. Concerning HES, a mixed-integer linear programming model (MILP) will determine the optimal solar array size, the units of wind generator, and storage system capacity. Besides, the proposed mathematical programming model will be executed on a successful aquaponics farm in Phu Quoc island, Vietnam. Main contributions accommodate the realistic solution for enhancing RE serving and storage efficiency, making aquaponics more sustainable in integrating solar and wind energy. This study determines the optimal HES size with minimal annual costs thanks to the balanced ratio between renewable and conventional energy. Farmers or investors, thus, can evaluate the investment they can afford annually. Meanwhile, carbon tax represents the environmental factor, affecting the GHG emissions emitted and motivating more RE use along with higher unit carbon tax. To achieve sustainable aquaponic systems, these findings above are the main outcomes but also indicate the future of RE that need to overcome the burden of storage cost and expect the price reduction, facilitate the penetration and reach 100% RE use in the entire system.
關鍵字(中) ★ 魚菜共生
★ 永續農業
★ 再生能源
★ 數學規劃
★ 溫室氣體
關鍵字(英) ★ aquaponics
★ sustainable agriculture
★ renewable energy
★ mathematical programming
★ greenhouse gas
論文目次 Table of Contents
摘要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables vii
List of Abbreviations viii
CHAPTER 1. RESEARCH PROBLEM 1
1.1 Aquaponic Systems 1
1.2 Global Warming and Sustainable Development of Aquaponic Systems 5
1.3 Research Motivation 10
1.4 Research Problem 12
CHAPTER 2. LITERATURE REVIEW 15
2.1 Conventional Aquaponic Systems 15
2.2 Sustainable Development of Aquaponic Systems 21
2.3 Sustainable Aquaponic Systems with RE 26
CHAPTER 3. RESEARCH METHODOLOGY 30
3.1 Problem Analysis 30
3.2 Optimization Model 31
CHAPTER 4. COMPUTER EXPERIMENTS 39
4.1 Aquaponics facilities 39
4.2 Results 42
CHAPTER 5. CONCLUSIONS 53
5.1 Conclusions 53
5.2 Future work 54
REFERENCES 56
APPENDIX 65
參考文獻 REFERENCES
[1] Adenaeuer L (2014). Up, Up and Away! The Economics of Vertical Farming. Journal of Agricultural Studies, 2: 40-60.
[2] ARC I (2021). Aquaponics Market - Forecast(2021 - 2026).
https://www.industryarc.com/Report/22/global-commercial-aquaponics-market.html, accessed 14 July 2021.
[3] Asciuto A, Schimmenti E, Cottone C and Borsellino V (2019). A financial feasibility study of an aquaponic system in a Mediterranean urban context. Urban Forestry & Urban Greening, 38: 397-402.
[4] Baiyin B, Tagawa K and Gutierrez J (2020). Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands. Sustainability, 12(22).
[5] BloombergNEF (2021). Battery Price Declines Slow Down in Latest Pricing Survey.
https://www.bloomberg.com/news/articles/2021-11-30/battery-price-declines-slow-down-in-latest-pricing-survey, accessed 07 December 2021.
[6] Bosma RH, Lacambra L, Landstra Y, Perini C, Poulie J, Schwaner MJ and Yin Y (2017). The financial feasibility of producing fish and vegetables through aquaponics. Aquacultural Engineering, 78: 146-154.
[7] Chen P, Zhu G, Kim H-J, Brown PB and Huang J-Y (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production, 275: 122888.

[8] Cole W, A. Will Frazier, and Chad Augustine. (2021). Cost Projections for UtilityScale Battery Storage: 2021 Update. N. R. E. L. (NREL).
[9] Danaher J, Shultz R, Rakocy J and Bailey D (2013). Alternative Solids Removal for Warm Water Recirculating Raft Aquaponic Systems. Journal of the World Aquaculture Society, 44.
[10] de Graaf F and Goddek S (2019). Smarthoods: Aquaponics Integrated Microgrids. In: S. Goddek, Joyce, A., Kotzen, B., Burnell, G. (Eds.), Aquaponics Food Production Systems, Springer International Publishing: New York, 379-392
[11] Delaide B, Delhaye G, Dermience M, Gott J, Soyeurt H and Jijakli MH (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquacultural Engineering, 78: 130-139.
[12] Ebeling JM and Timmons MB (2012). Recirculating Aquaculture Systems In: Aquaculture Production Systems, John Wiley & Sons, Inc: New York, USA, 245-277
[13] Endut A, Jusoh A, Ali N, Wan Nik WB and Hassan A (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology, 101(5): 1511-1517.
[14] EVN (2021). Retail Electricity Tariff.
https://en.evn.com.vn/d6/gioi-thieu-d/RETAIL-ELECTRICITY-TARIFF-9-28-252.aspx, accessed 06 November 2021.
[15] FAO (2018). Is the planet approaching "peak fish"? Not so fast, study says.
http://www.fao.org/news/story/en/item/1144274/icode/, accessed 21 July 2021.

[16] FAO (2021). Emissions due to agriculture. Global, regional and country trends 2000–2018.
http://www.fao.org/3/cb3808en/cb3808en.pdf, accessed 16 August 2021.
[17] FAO (2020). World Food and Agriculture - Statistical Yearbook 2020. FAO: Rome, Italy.
[18] FAO, IFAD, UNICEF, WFP and WHO (2020). The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. FAO: Rome, Italy.
[19] Forchino AA, Lourguioui H, Brigolin D and Pastres R (2017). Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquacultural Engineering, 77: 80-88.
[20] Forchino AA, Gennotte V, Maiolo S, Brigolin D, Mélard C and Pastres R (2018). Eco-designing Aquaponics: A Case Study of an Experimental Production System in Belgium. Procedia CIRP, 69: 546-550.
[21] Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H and Thorarinsdottir R (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability, 7(4).
[22] Goddek S, Espinal CA, Delaide B, Jijakli MH, Schmautz Z, Wuertz S and Keesman KJ (2016). Navigating towards Decoupled Aquaponic Systems: A System Dynamics Design Approach. Water, 8(7).
[23] Goldstein B, Hauschild M, Fernández J and Birkved M (2016). Urban versus conventional agriculture, taxonomy of resource profiles: a review. Agronomy for Sustainable Development, 36.

[24] GSA (2021).
https://globalsolaratlas.info/detail?r=VNM&c=10.214922,103.988342,11&s=10.215309,103.988044&m=site&pv=medium,180,13,100, accessed 06 November 2021.
[25] Heijden VD, Farrag PF and Blom-Zandstra G (2013). Bustan aquaponics: Egypt′s first working commercial aquaponic farm. Aquaculture Europe, 38(2).
[26] Helge SN-S, Holger NJ and Laurids LM (2020). Decarbonization of the Nordics. Fortum Oyj: Espoo, Finland.
[27] Hu Z, Lee JW, Chandran K, Kim S and Khanal SK (2012). Nitrous Oxide (N2O) Emission from Aquaculture: A Review. Environmental Science & Technology, 46(12): 6470-6480.
[28] IBEF (2021). Renewable Energy Industry in India.
https://www.ibef.org/industry/renewable-energy.aspx, accessed 23 August 2021.
[29] IEA (2019). World Energy Outlook. International Energy Agency (IEA): Paris, France.
[30] IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: New York, USA.
[31] IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: Geneva, Switzerland.
[32] IRENA (2021). Renewable Power Generation Costs in 2020. International Renewable Energy Agency (IRENA): Abu Dhabi, UAE.

[33] Ismail F and Gryzagoridis J (2016). Sustainable development using renewable energy to boost aquaponics food production in needy communities. International Conference on the Industrial and Commercial Use of Energy (ICUE): 185-190.
[34] Karimanzira D, Na C, Hong M and Wei Y (2021). Intelligent Information Management in Aquaponics to Increase Mutual Benefits. Intelligent Information Management, 13(1): 50-69.
[35] Karimanzira D and Rauschenbach T (2018). Optimal Utilization of Renewable Energy in Aquaponic Systems. Energy and Power Engineering, 10(6): 279-300.
[36] Kloas W, Gross R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B, Wuertz S, Zikova A and Rennert B (2015). A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions, 7.
[37] König B, Junge R, Bittsánszky A, Villarroel M and Komives T (2016). On the sustainability of aquaponics. Ecocycles, 2(1): 26-32.
[38] Lai CS, Jia Y, Xu Z, Lai LL, Li X, Cao J and McCulloch MD (2017). Levelized cost of electricity for photovoltaic/biogas power plant hybrid system with electrical energy storage degradation costs. Energy Conversion and Management, 153: 34-47.
[39] Lennard W and Goddek S (2019). Aquaponics: The Basics. In: Aquaponics Food Production Systems, Springer: Cham, Switzerland, 113-143
[40] Li L, Li X, Chong C, Wang C-H and Wang X (2020). A decision support framework for the design and operation of sustainable urban farming systems. Journal of Cleaner Production, 268: 121928.
[41] Lobillo-Eguíbar J, Fernández-Cabanás VM, Bermejo LA and Pérez-Urrestarazu L (2020). Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy, 10(10).
[42] Love D, Fry J, Genello L, Hill E, Frederick J, Li X and Semmens K (2014). An International Survey of Aquaponics Practitioners. PloS one, 9(7): e102662.
[43] Love DC, Uhl MS and Genello L (2015a). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68: 19-27.
[44] Lu Q, Han P, Xiao Y, Liu T, Chen F, Leng L, Liu H and Zhou W (2019). The novel approach of using microbial system for sustainable development of aquaponics. Journal of Cleaner Production, 217: 573-575.
[45] Mohamad N, Soh A, Salleh A, Hashim NMZ, Abd Aziz MZ, Sarimin N, Othman A and Abd Ghani Z (2013). Development of Aquaponic System using Solar Powered Control Pump. IOSR Journal of Electrical and Electronics Engineering, 8: 01-06.
[46] Montesines-Nagayo A, Mendoza C, Vega E, Izki R and Jamisola R (2017). An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman. IEEE International Conference on Smart Grid and Smart Cities (ICSGSC): 42-49.
[47] MWO. (2021). State of the Global Climate 2020. World Meteorological Organization (WMO): Geneva, Switzerland
[48] NASA (2021). Carbon Dioxide.
https://climate.nasa.gov/vital-signs/carbon-dioxide/, accessed 22 August 2021.
[49] NREL (2012). Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics.
https://www.nrel.gov/docs/fy13osti/56487.pdf, accessed 02 August 2021.
[50] O′Sullivan CA, Bonnett GD, McIntyre CL, Hochman Z and Wasson AP (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174: 133-144.
[51] Palm H, Knaus U, Appelbaum S, Goddek S, Strauch S, Vermeulen T, Jijakli M and Kotzen B (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26.
[52] Pathakoti K, Manubolu M and Hwang H-M (2018). Nanotechnology Applications for Environmental Industry. In: C. Mustansar Hussain, Handbook of Nanomaterials for Industrial Applications, Elsevier: Amsterdam, Netherlands, 894-907
[53] Quagrainie KK, Flores RMV, Kim H-J and McClain V (2018). Economic analysis of aquaponics and hydroponics production in the U.S. Midwest. Journal of Applied Aquaculture, 30(1): 1-14.
[54] Rakocy J, Michael P and Thomas M (2012). Aquaponics-Integrating Fish and Plant Culture. In: J. Tidwell, Aquaculture production systems, John Wiley & Sons, Inc: New York, USA, 344-386
[55] Rakocy JE, Shultz RC, Bailey D and Thoman ES (2004). Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Horticulturae, 648: 63-69.
[56] Rakocy JE, Bailey D, Shultz RC and Danaher JJ (2007). Preliminary evaluation of organic waste from two aquaculture systems as a source of inorganic nutrients for hydroponics. Acta Horticulturae, 742: 201-208.
[57] Rupasinghe JW and Kennedy JOS (2010). Economic Benefits Of Integrating A Hydroponic-Lettuce System Into A Barramundi Fish Production System. Aquaculture Economics & Management, 14(2): 81-96.
[58] Somerville C, Cohen M, Pantanella E, Stankus A and Lovatelli A (2014). Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper 589: Rome, Italy.
[59] Superior-Fresh (2021). Famili farm with family values.
https://www.superiorfresh.com/our-farm, accessed 16 August 2021.
[60] Tokunaga K, Tamaru C, Ako H and Leung P (2015). Economics of Small-scale Commercial Aquaponics in Hawai‘i. Journal of the World Aquaculture Society, 46(1): 20-32.
[61] Tyson R, Treadwel DD and Simonne E (2011). Opportunities and Challenges to Sustainability in Aquaponic Systems. HortTechnology, 21: 1-13.
[62] Wiser R, Rand J, Seel J, Beiter P, Baker E, Lantz E and Gilman P (2021). Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy, 6(5): 555-565.
[63] World-Bank (2015). Rapid, Climate-Informed Development Needed to Keep Climate Change from Pushing More than 100 Million People into Poverty by 2030.
https://www.worldbank.org/en/news/feature/2015/11/08/rapid-climate-informed-development-needed-to-keep-climate-change-from-pushing-more-than-100-million-people-into-poverty-by-2030, accessed 13 August 2021.

[64] World-Bank (2021). State and Trends of Carbon Pricing 2021. Washington, DC, USA.
[65] Yanes AR, Martinez P and Ahmad R (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263: 121571.
[66] Yep B and Zheng Y (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228: 1586-1599.
[67] Zamora DT, Sánchez F, Teba EMS, Tous MC and Campos R (2019). Design of an aquaponic system run on solar power for a family business in Chad. European Journal of Family Business, 9: 39-48.
[68] Zisis C, Pechlivani EM, Tsimikli S, Mekeridis E, Laskarakis A and Logothetidis S (2019). Organic Photovoltaics on Greenhouse Rooftops: Effects on Plant Growth. Materials Today: Proceedings, 19: 65-72.
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2022-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明