博碩士論文 107523065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.12.71.237
姓名 蔡怡萱(Yi-Syuan Tsai)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 使用太陽能供電的可重構智能板於 無線通訊系統之設計與模擬
(Design and Simulation of Solar-Powered Reconfigurable Intelligent Surface-Assisted Wireless Communication Systems)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,為了服務越來越多的使用者及達到越來越好的收訊品質要求,造成能源消耗及電量供不應求,能量獵取技術(Energy Harvest)能夠藉由獵取周遭環境的能源,來維持小規模無線通訊裝置的使用時效,解決有限容量電池電量問題。在無線傳輸環境中,訊號會經歷複雜的反射、折射、散射、繞射、穿透、干擾等一系列複雜的過程,因此很難完美傳播,過去常用的解決方式著重在增強基地台和接收端的能力,而可重構智能板(Reconfigurable Intelligent Surface, RIS)技術則換了一種思路,直接在無線傳輸通道上做文章,且其元件能消耗極少的功率就能達到極佳的傳輸效能。可重構智能板是6G時代的突破性發明,它可部署在發射端和接收端之間任何地方,當作中繼站增強當前通訊網路性能。
在此篇論文中,吾人提出以太陽能能量獵取技術作為可充電電池之能量供應來源,並提供可重構智能板上之元件開關控制使用,模擬在單天線基地台與單天線用戶的無線傳輸環境中,以最大化系統通道容量為目標,聯合設計出可重構智能板上元件之相位偏移及開關模式,藉由先固定開關模式,推導出每個相位偏移都是獨立由相對應的通道來決定的,接著根據上述,制定出一非凸最佳化問題,並使用凸優化中連續凸逼近的遞迴式方法,求出最佳的開關模式,使整體傳輸速率最大。最後探討用戶所在位置不同、可重構智能板放置位置不同、可重構智能板元件數量不同、太陽能板數量多寡,以及三種通道:分別為可重構智能板加上直接路徑三條路徑、不包含可重構智能板的通道、不包含直接路徑的通道,造成通道容量的變化,以最佳化系統傳輸效能。由模擬結果可以證明使用凸優化中連續凸逼近(SCA)的遞迴式方法,可以獲得最好的可重構智能板的元件開關模式,且在無線傳輸環境使用可重構智能板的確能有效提升傳輸品質。
摘要(英) In recent years, in order to serve more and more users and achieve better and better reception quality requirements, resulting in energy consumption and power supply in short supply, energy harvesting technology can maintain small-scale wireless communication devices by harvesting energy from the surrounding environment. To maintain the operational use time of devices in small-scale wireless communication and solve the problem of limited battery capacity. In the wireless transmission environment, the signal will transmit through a complex environment such as complex, reflection, refraction, scattering, diffraction, penetration, interference, etc., so it is difficult to transmit perfectly. The commonly used solutions in the past focused on enhancing the base station and the receiver. However, while the Reconfigurable Intelligent Surface (RIS) technology changed a different way of thinking and made a fuss directly on the wireless transmission channel. RIS is a breakthrough invention in the 6G wireless networks. Unlike the transmitter and receiver, RIS can be deployed anywhere in between and used as a relay station to enhance the performance of the current communication network.
In this thesis, we propose to use solar energy harvesting technology as the energy supply source for rechargeable batteries and provide elements of the RIS to simulate the wireless transmission environment of base station is equipped with single-antenna and user is equipped with single-antenna. With the goal of maximizing the system channel capacity, the phase shift and switching mode of the elements of the RIS are jointly designed. By fixing the switching mode first, it is deduced that each phase shift is independent and corresponding. Then, according to the above, a non-convex optimization problem is formulated, and the recursive method of Successive Convex Approximation (SCA) is used to find the best switching mode to maximize the overall data rate. At last, we will discuss the number of configuration elements of the RIS, the placement position of the RIS, the location of the user′s movement, the amount of solar energy size, and three types of channels: first, BS directly to UE; second, BS to RIS and then RIS to UE; third, it is the combination of the former two types. All these resulting in the relationship among the change in channel capacity so as to optimize the system transmission efficiency.
The simulation results can prove that using the recursive method of Successive Convex Approximation (SCA) in convex optimization can obtain the optimal switching mode of elements of the RIS, and the use of RIS in wireless transmission environment can indeed effectively improve transmission quality.
關鍵字(中) ★ 能量獵取
★ 凸優化
★ 連續凸逼近
★ 可重構智能表面
關鍵字(英) ★ Energy harvesting
★ Convex optimization
★ Successive Convex Approximation (SCA)
★ Reconfigurable Intelligent Surface (RIS)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 ix
符號說明 x
主要符號統整 xi
第一章 緒論 1
1-1 研究背景及動機 1
1-2 文獻探討 3
1-3 論文貢獻 5
第二章 使用太陽能供電的可重構智能板無線通訊系統 6
2-1 能量獵取(Energy harvesting) 6
2-2 太陽能能量獵取大數據 7
2-3 可重構智能板(Reconfigurable Intelligent Surface, RIS)簡介 8
2-4 系統模型 9
2-5 通道模型 12
第三章 最佳化問題制定 14
3-1 通道容量(Channel capacity)簡介 14
3-2 可重構智能板開關模式最佳化問題 15
3-3 可重構智能板開關模式最佳化問題-最佳可重構智能板相位 17
3-4 可重構智能板開關模式最佳化問題-最佳開關模式 q_(t,i) 20
3-5 可重構智能板開關模式最佳化問題-最佳開關模式 q_(t,i) 次佳解 24
第四章 模擬結果 26
4-1 三種通道方案之通道容量計算 27
4-2 連續凸逼近遞迴法迭代收斂 28
4-3 可重構智能板位置在x軸方向移動使用SCA之比較 29
4-4 可重構智能板位置移動之比較 31
4-5 用戶位置移動之比較 34
4-6 太陽能板數量不同之比較 35
4-7 可重構智能板元件數量不同之比較 36
第五章 結論 37
參考文獻 38
參考文獻 [1] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. Demeester, “Overall ICT footprint and green communication technologies,” in Proc. IEEE ISCCSP’ 10, pp. 1-6, March 2010.
[2] A. Kumar, K. Singh, and D. Bhattacharya, “Green communication and wireless networking,” in Proc. ICGCE’ 13, pp. 49-52, Dec. 2013.
[3] I. U. Ramirez, and N. A. B. Tello, “A Survey of Challenges in Green Wireless Communications Research,” in Proc. ICMEAE’ 14, pp. 197-200, Nov. 2014.
[4] P. Gandotra, and R. K. Jha, “Next generation cellular networks and green communication,” in Proc COMSNETS’ 18, pp. 522-524, Jan. 2018.
[5] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” [Online]. Available: http://cvxr.com/cvx, Dec. 2018.
[6] M.-L. Ku, Y. Chen and K. J. R. Liu, “Data-Driven Stochastic Models and Policies for Energy Harvesting Sensor Communications,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505-1520, Aug. 2015.
[7] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sept. 2011.
[8] M. Tacca, P. Monti, and A. Fumagalli, “Cooperative and Reliable ARQ Protocols for Energy Harvesting Wireless Sensor Nodes,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2519-2529, July 2007.
[9] S. Reddy and C. R. Murthy, “Profile-Based Load Scheduling in Wireless Energy Harvesting Sensors for Data Rate Maximization,” in Proc. IEEE ICC’10, pp. 1-5, 2010.
[10] N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission Policies for Energy Harvesting Sensors with Time-Correlated Energy Supply,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, July 2013.
[11] B. Medepally and N. B. Mehta, “Voluntary Energy Harvesting Relays and Selection in Cooperative Wireless Networks,” IEEE Trans. Wireless commun., vol. 9, no. 11, pp. 3543-3553, Nov. 2010.
[12] S. Zeng, H. Zhang, B. Di, Z. Han, L. Song, “Reconfigurable Intelligent Surface (RIS) Assisted Wireless Coverage Extension: RIS Orientation and Location Optimization,” IEEE Commun. Lett., vol. 25, no. 1, pp. 269-273, Jan. 2021.
[13] L. Ge, P. Dong, H. Zhang, Jun-Bo Wang, X. You, “Joint Beamforming and Trajectory Optimization for Intelligent Reflecting Surfaces-Assisted UAV Communications,” IEEE Access, vol. 8, April. 2020.
[14] C. Huang, A. Zappone, George C. Alexandropoulos, M. Debbah, and C. Yuen,
“Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication,”
IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157-4170, Aug. 2019.
[15] S. Zeng, H. Zhang, B. Di, Z. Han, L. Song, “Reconfigurable Intelligent Surface (RIS) Assisted Wireless Coverage Extension: RIS Orientation and Location Optimization,” IEEE Commun. Lett., pp. 269-273, Sept. 2020.
[16] Y. Liu, L. Zhang, P. V. Klaine, M. Ali Imran,” Optimal Multi-user Transmission based on a Single Intelligent Reflecting Surface,” IEEE 4th ICEICT’16, Aug. 2021.
[17] N. K. Kundu, M. R. McKay, “RIS-Assisted MISO Communication: Optimal Beamformers and Performance Analysis,” 2020 IEEE GC Wkshps, Dec. 2020.
[18] J. Zhang, J. Liu, S. Ma, Chao-Kai Wen, S. Jin, “Large System Achievable Rate Analysis of RIS-Assisted MIMO Wireless Communication With Statistical CSIT,” IEEE Trans. Wireless Commun., vol. 20, Issue.9, pp. 5572-5585, Sept. 2021.
[19] X. Liu, Y. Liu, Y. Chen, H. Vincent Poor, “RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design,” IEEE J. Sel. Areas Commun., vol.39, Issue: 4, pp. 1057-1071, Aug. 2020.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明