博碩士論文 109523065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.17.75.227
姓名 葉鎧瑋(Kai-Wei Yeh)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 協作式自編碼器嵌入最佳化方法於無人機群網路以接收訊號強度輔助定位之研究
(RSS-Aided Localization in UAV Swarm Networks: A Cooperative Autoencoder-embedded Optimization Approach)
相關論文
★ 基於多代理人強化學習方法多架無人機自主追蹤之研究★ 連網無人機路徑規劃與基地台連線策略之共同設計:使用模仿增強的深度強化學習方法
★ 網路編碼於多架無人機網路以抵禦機器學習攻擊之研究★ 使用多代理人強化學習於無線快取網路設計空中基地台三維路徑之研究
★ 空中無線感測:在無人機抖動環境下基於RSS的非接觸式人體偵測與定位
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 精準且可靠之定位資訊是實現無人機群應用的先決條件。
然而,傳統全球定位系統或基於射頻的定位方法無法良好運作於高度動態且不穩定之移動隨意網路環境中。
在本論文中,我們提出一種新穎的無線定位方法,在具有異常全球定位系統訊號的未知通訊環境中,根據無人機之間的接收訊號強度來準確地定位無人機群。
所提方法在無人機應用情境中,其挑戰性在於同時考量異常定位訊號問題以及要求高精準之定位。
該方法的關鍵概念是透過改進凸鬆弛公式來解決位置匹配問題,並考慮待定位目標是否位於由錨點構成之凸包內或外。
此外,根據估計位置之分布,我們提出利用變分自編碼器來計算異常分數。
不同錨點組合所得之異常分數被進一步描述成分數背包問題,並經過求解以獲得最佳錨點選擇。
我們透過數值模擬與真實數據驗證所提之方法。
結果指出,所提方法相較於現有方法能取得較高的偵測準確度與定位精準度,同時對於接收訊號強度之量測誤差有較好的穩健性。
摘要(英) Accurate and reliable localization is a prerequisite for unmanned aerial vehicle (UAV) swarm applications.
However, conventional GPS or RF-based localization systems do not work well in highly dynamic and unstable mobile ad-hoc environments.
In this paper, we present a new approach to accurately localize UAVs in unknown communication environments with anomalous GPS reception, based on the received signal strength (RSS) between the UAVs.
The proposed approach is non-trivial given the combinational nature of the considered problem and the requirement of high localization accuracy in the UAV application scenario.
The key idea of the proposed approach is to solve the position mapping problem by refining the convex relaxation formulation which considers that the target to be localized is inside or outside the convex hull formed by the anchors.
Besides, a variational autoencoder is used to calculate the anomaly score based on the estimated position distributions.
The optimal anchor node selection is obtained by solving a fractional knapsack problem which takes into account the anomaly score of different node combinations.
We evaluate our approach through numerical simulations and field tests with real GPS data collected from a quadrotor UAV.
Our results indicate that the proposed approach achieves higher detection and localization accuracy and is more robust to RSS measurement errors compared to the baseline schemes.
關鍵字(中) ★ 無線定位
★ 凸優化
★ 接收訊號強度
★ 異常偵測
★ 無人機
關鍵字(英)
論文目次 論文摘要 (i)
Abstract (ii)
目錄 (v)
圖目錄 (vi)
表目錄 (viii)
一、 緒論 (1)
1.1 研究背景 (1)
1.2 研究動機與目的 (1)
1.3 論文架構 (4)
二、 文獻探討 (5)
2.1 基於 RSS 之最佳化定位 (5)
2.2 異常偵測 (8)
2.2.1 基於自編碼器之異常偵測方法 (9)
2.3 綜合觀點 (11)
三、 系統模型 (14)
3.1 網路模型 (14)
3.2 通訊模型 (15)
3.3 問題描述 (16)
四、 協作式自編碼器嵌入最佳化方法 (18)
4.1 錨點分組 (18)
4.2 所提之基於 RSS 的最佳化定位 (19)
4.3 基於變分自編碼器之異常偵測 (25)
五、 性能評估 (30)
5.1 模擬結果分析 (31)
5.2 實驗結果分析 (39)
六、 討論與未來研究方向 (43)
七、 結論與貢獻 (45)
索引 (46)
參考文獻 (46)
參考文獻 [1] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tuto- rial on UAVs for wireless networks: Applications, challenges, and open problems,” IEEE communications surveys & tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
[2] S. Bhamidipati and G. X. Gao, “Locating multiple GPS jammers using networked UAVs,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1816–1828, 2019.
[3] Y. Li, F. Shu, B. Shi, X. Cheng, Y. Song, and J. Wang, “Enhanced RSS- based UAV localization via trajectory and multi-base stations,” IEEE Communications Letters, vol. 25, no. 6, pp. 1881–1885, 2021.
[4] S.-W. Ko, H. Chae, K. Han, S. Lee, D.-W. Seo, and K. Huang, “V2X- based vehicular positioning: Opportunities, challenges, and future di- rections,” IEEE Wireless Communications, vol. 28, no. 2, pp. 144–151, 2021.
[5] R. Skulstad, C. Syversen, M. Merz, N. Sokolova, T. Fossen, and T. Jo- hansen, “Autonomous net recovery of fixed-wing UAV with single-frequency carrier-phase differential GNSS,” IEEE Aerospace and Elec- tronic Systems Magazine, vol. 30, no. 5, pp. 18–27, 2015.
[6] K. Liu, Z. Tian, Z. Li, J. Wang, and M. Zhou, “HiLoc: Sub-meter level indoor localization using a single access point with distributed anten- nas in wireless sensor networks,” IEEE Sensors Journal, Early access, 2021.
[7] X. Jiang, N. Li, Y. Guo, D. Yu, and S. Yang, “Localization of multiple RF sources based on bayesian compressive sensing using a limited num- ber of UAVs with airborne RSS sensor,” IEEE Sensors Journal, vol. 21, no. 5, pp. 7067–7079, 2020.
[8] T. Kazaz, G. J. Janssen, J. Romme, and A.-J. Van der Veen, “Delay estimation for ranging and localization using multiband channel state information,” IEEE Transactions on Wireless Communications, Early access, 2021.
[9] H. Lohrasbipeydeh and T. A. Gulliver, “RSSD-based MSE-SDP source localization with unknown position estimation bias,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8416–8428, 2021.
[10] L. A. C. Najarro, I. Song, and K. Kim, “Differential evolution with opposition and redirection for source localization using RSS measure- ments in wireless sensor networks,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1736–1747, 2020.
[11] Y. Hu and G. Leus, “Robust differential received signal strength-based localization,” IEEE Transactions on Signal Processing, vol. 65, no. 12, pp. 3261–3276, 2017.
[12] Y. Wang, S. Li, W. Ni, D. Abbott, M. Johnson, G. Pei, and M. Hed- ley, “Automatic device-location association based on received signal strength measurements,” in IEEE Vehicular Technology Conference (VTC Fall), 2020.
[13] S. Srirangarajan, A. H. Tewfik, and Z.-Q. Luo, “Distributed sensor net- work localization using SOCP relaxation,” IEEE Transactions on Wire- less Communications, vol. 7, no. 12, pp. 4886–4895, 2008.
[14] P.-H. Tsai, G.-R. Shih, W.-D. Cheng, and R.-G. Tsai, “Σ -scan: A mo- bile beacon-assisted localization path-planning algorithm for wireless sensor networks,” IEEE Sensors Journal, vol. 19, no. 23, pp. 11 492–
11 502, 2019.

[15] B. Mukhopadhyay, S. Srirangarajan, and S. Kar, “RSS-based local- ization in the presence of malicious nodes in sensor networks,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–16, 2021.
[16] B. Xu, S. Li, A. A. Razzaqi, Y. Guo, and L. Wang, “A novel measure- ment information anomaly detection method for cooperative localiza- tion,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–18, 2021.
[17] 3GPP, “Security aspects of Uncrewed Aerial Systems (UAS),” Tech. Rep. 33.256 version 17.0.0 (Mar. 2022). [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/33_series/33.256/
[18] X. Wu, Y. Shen, X. Zhu, and Q. Lin, “Semidefinite programming so- lutions for elliptic localization in asynchronous radar networks,” IEEE Transactions on Aerospace and Electronic Systems, Early access, 2022.
[19] S. Tomic, M. Beko, and R. Dinis, “RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooper- ative schemes,” IEEE Transactions on Vehicular Technology, vol. 64, no. 5, pp. 2037–2050, 2014.
[20] Q. Li, B. Chen, and M. Yang, “Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating di- rection method of multipliers,” IEEE Sensors Journal, vol. 20, no. 22, pp. 13 666–13 673, 2020.
[21] Y. Zou and H. Liu, “RSS-based target localization with unknown model parameters and sensor position errors,” IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 6969–6982, 2021.
[22] X. Wu, H. Qi, and N. Xiong, “Rank-one semidefinite programming so- lutions for mobile source localization in sensor networks,” IEEE Trans- actions on Network Science and Engineering, vol. 8, no. 1, pp. 638–650, 2020.
[23] Y. Wang, S. Li, W. Ni, D. Abbott, M. Johnson, G. Pei, and M. Hedley, “Cooperative localization and association of commercial-off-the-shelf sensors in three-dimensional aircraft cabin,” IEEE Transactions on Au- tomation Science and Engineering, Early access, 2021.
[24] Z. Ma, F. Liu, H. Qiao, S. Liu, and X. Lv, “Joint optimization of an- chor deployment and power allocation in wireless network localiza- tion,” IEEE Communications Letters, vol. 24, no. 5, pp. 1086–1089, 2020.
[25] X. Ma, B. Hao, H. Zhang, and P. Wan, “Semidefinite relaxation for source localization by TOA in unsynchronized networks,” IEEE Signal Processing Letters, vol. 29, pp. 622–626, 2022.
[26] Q. Shi, C. He, H. Chen, and L. Jiang, “Distributed wireless sensor net- work localization via sequential greedy optimization algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 6, pp. 3328–3340, 2010.
[27] S. Zhu and Z. Ding, “Distributed cooperative localization of wireless sensor networks with convex hull constraint,” IEEE Transactions on Wireless Communications, vol. 10, no. 7, pp. 2150–2161, 2011.
[28] K. Yang, G. Wang, and Z.-Q. Luo, “Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals,” IEEE transactions on signal processing, vol. 57, no. 7, pp. 2775–2784, 2009.
[29] G. Naddafzadeh-Shirazi, M. B. Shenouda, and L. Lampe, “Second order cone programming for sensor network localization with anchor position uncertainty,” IEEE transactions on wireless communications, vol. 13, no. 2, pp. 749–763, 2013.
[30] M. Katwe, P. Ghare, and P. K. Sharma, “Robust NLOS bias mitigation for hybrid RSS-TOA based source localization under unknown trans- mission parameters,” IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 542–546, 2020.
[31] P. Tseng, “Second-order cone programming relaxation of sensor net- work localization,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 156–185, 2007.
[32] H. Alipour, Y. B. Al-Nashif, P. Satam, and S. Hariri, “Wireless anomaly detection based on IEEE 802.11 behavior analysis,” IEEE transactions on information forensics and security, vol. 10, no. 10, pp. 2158–2170, 2015.
[33] O. Salem, K. Alsubhi, A. Mehaoua, and R. Boutaba, “Markov mod- els for anomaly detection in wireless body area networks for secure health monitoring,” IEEE Journal on Selected Areas in Communica- tions, vol. 39, no. 2, pp. 526–540, 2020.
[34] L. Nie, L. Zhao, and K. Li, “Robust anomaly detection using reconstruc- tive adversarial network,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1899–1912, 2021.
[35] T. Li, Z. Hong, Q. Cai, L. Yu, Z. Wen, and R. Yang, “BISSIAM: Bis- pectrum siamese network based contrastive learning for UAV anomaly detection,” IEEE Transactions on Knowledge and Data Engineering, Early access, 2021.
[36] W. He, Y. He, B. Li, and C. Zhang, “A naive-bayes-based fault diagnosis approach for analog circuit by using image-oriented feature extraction and selection technique,” IEEE Access, vol. 8, pp. 5065–5079, 2019.
[37] W. Lu, Y. Cheng, C. Xiao, S. Chang, S. Huang, B. Liang, and T. Huang, “Unsupervised sequential outlier detection with deep architectures,” IEEE transactions on image processing, vol. 26, no. 9, pp. 4321–4330, 2017.
[38] A. Dairi, F. Harrou, Y. Sun, and M. Senouci, “Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme,” IEEE Sensors Journal, vol. 18, no. 12, pp. 5122–5132, 2018.
[39] B. Du, X. Sun, J. Ye, K. Cheng, J. Wang, and L. Sun, “GAN-based anomaly detection for multivariate time series using polluted training set,” IEEE Transactions on Knowledge and Data Engineering, Early access, 2021.
[40] A. L. Ellefsen, P. Han, X. Cheng, F. T. Holmeset, V. Æsøy, and
H. Zhang, “Online fault detection in autonomous ferries: Using fault- type independent spectral anomaly detection,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 8216–8225,
2020.

[41] K.-L. Lim, X. Jiang, and C. Yi, “Deep clustering with variational au- toencoder,” IEEE Signal Processing Letters, vol. 27, pp. 231–235, 2020.
[42] K. Liu, X. Liu, and X. Li, “Guoguo: Enabling fine-grained smartphone localization via acoustic anchors,” IEEE transactions on mobile com- puting, vol. 15, no. 5, pp. 1144–1156, 2015.
[43] C. Meng, Z. Ding, and S. Dasgupta, “A semidefinite programming ap- proach to source localization in wireless sensor networks,” IEEE signal processing letters, vol. 15, pp. 253–256, 2008.
[44] S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016. [Online]. Available: https://www.cvxpy.org/
[45] M. S. Andersen, J. Dahl, L. Vandenberghe et al., “CVXOPT: A python package for convex optimization,” abel. ee. ucla. edu/cvxopt, vol. 88, 2013. [Online]. Available: https://www.cvxopt.org/
[46] S. Ryu, H. Choi, H. Lee, and H. Kim, “Convolutional autoencoder based feature extraction and clustering for customer load analysis,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1048–1060, 2019.
[47] Y. Jiang, Y. Hu, M. Bennis, F.-C. Zheng, and X. You, “A mean field game-based distributed edge caching in fog radio access networks,” IEEE Transactions on Communications, vol. 68, no. 3, pp. 1567–1580, 2019.
[48] M. F. Hanif, L.-N. Tran, A. Tölli, and M. Juntti, “Computationally ef- ficient robust beamforming for SINR balancing in multicell downlink with applications to large antenna array systems,” IEEE transactions on communications, vol. 62, no. 6, pp. 1908–1920, 2014.
[49] G. Wang and K. Yang, “A new approach to sensor node localization us- ing RSS measurements in wireless sensor networks,” IEEE transactions on wireless communications, vol. 10, no. 5, pp. 1389–1395, 2011.
[50] Y. Wang, Z. Su, N. Zhang, and A. Benslimane, “Learning in the air: Se- cure federated learning for UAV-assisted crowdsensing,” IEEE Trans- actions on network science and engineering, vol. 8, no. 2, pp. 1055– 1069, 2020.
[51] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, “Privacy- preserving federated learning for UAV-enabled networks: learning- based joint scheduling and resource management,” IEEE Journal on Se- lected Areas in Communications, vol. 39, no. 10, pp. 3144–3159, 2021.
[52] Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, “Fed- erated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9827–9837, 2020.
指導教授 陳昱嘉 審核日期 2022-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明