博碩士論文 90342017 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.15.139.30
姓名 陳文泉(Wen-Chuan Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高放射性廢棄物深層地質處置緩衝材料之回脹行為研究
(The study on swelling behavior of buffer material in a deep geological repository)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高放射性廢棄物最終處置是核能發電國家關切的環保議題,目前各國都致力於深層地質處置系統的研究發展。本論文以深層地質處置系統中,緩衝材料在處置場近場環境回脹成效為研究軸心,以具潛力的台灣日興土與美國懷俄明州膨潤土(BH膨潤土)為試驗材料,探索膨潤土在深層地質處置場特殊環境下的回脹行為。
試驗結果顯示日興土的主要黏土組成為鈣型鋁蒙脫石,材料成分中含高量鐵化合物,其性質與法國FoCa黏土相近。BH膨潤土則以鈉型蒙脫石為主要組成礦物。熱重分析結果顯示BH膨潤土比日興土具較佳的抗熱性。
高放射性廢棄物處置後,其衰變熱與放射性會持續釋出而影響近場環境,而海水入侵也是瀕海處置場首要分析的重要情節。本研究模擬近場環境對緩衝材料的回脹性質影響,結果發現:
(1)水熱溫度的提昇,將使日興土因熱擾動而使表面吸附水層減少,引發回脹量下降。而BH膨潤土則因滲透壓力增加而回脹量增加。
(2)經高溫熱處理後的膨潤土,其可交換陽離子會移入黏土結構層間或緊密嵌在表面之上,補償結構負電荷,可交換陽離子容量隨之降低,回脹量也因而降低。
(3)膨潤土在NaCl及CaCl2溶液系統中形成不同結構,在NaCl溶液系統中的結構趨向分散狀態,致使回脹行為與擴散雙層理論一致;在CaCl2溶液系統中的膨潤土則形成擬結晶結構,回脹行為無法適用擴散雙層理論。
日興土的自由回脹量約為BH膨潤土的七分之一,藉由添加Na2CO3使其於溶液相中引發離子交換程序,可使日興土改質為鈉型膨潤土,提升其回脹量。由於離子交換的改質程序具遲滯性,故改質土的回脹歷時曲線呈現後期上升的曲線型態。經離子交換程序後的改質日興土,最大回脹量可提升3倍。改質土對輻射衰變熱的耐受性良好,對於200℃乾燥加熱與90℃的水熱環境條件下,都能發揮其回脹潛能。
摘要(英) Bentonites serve as buffer material in an engineered barrier system for isolation of high-level radioactive wastes because of their high swelling potential. In the current proposal for deep geological disposal of the high-level wastes in Taiwan, compacted bentonite is used to contain the metallic waste canisters and separate the waste from the host rock and backfilled materials. Two bentonite samples are used in this study, namely Zhisin clay and BH bentonite. Zhisin clay was identified as a Ca-bentonite, and BH bentonite is a Na-bentonite.
Several near field conditions including decay heat, radioactivity, and groundwater intrusion in a deep geological repository are simulated in this work. Free swelling tests were performed in accordance with the ISRM suggested procedures.
The maximum swelling strain of Zhisin clay decreases with increasing hydrothermal temperature. On the other hand, the maximum swelling strain of BH bentonite increases with increasing hydrothermal temperature. Lattice contraction and osmotic pressure enhancement are judged to be the dominating mechanisms affecting the swelling of Zhisin clay and BH bentonite, respectively.
Thermal treatment of clayey soils was found to result in marked decrease in CEC (cation exchange capacity). Reductions in CEC resulted from thermal treatment caused the swelling of bentonites to decrease.
The maximum swelling strain of bentonites decreases in salt solutions. The amount of reduction in swelling strain is affected by the type of electrolyte and the concentration of solution. The swelling behavior in a NaCl solution conforms to the diffuse double layer theory, so the swelling strain decreases with increasing concentration. Due to the formation of quasi-crystals in the presence of calcium ions, the swelling strains of bentonites in CaCl2 solutions, regardless of the concentration, are much lower.
To enhance the swelling potential of Zhisin clay, a cation exchange process by the addition of Na2CO3 powder is introduced in this research. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Due to the ion exchange hysteresis, activated bentonite shows a different type of time-swell curve than the traditional sigmoid-shaped curve. The optimal amount of Na2CO3 addition was found to be 1%, and the maximum swelling strain was 3 times as much as that of untreated Zhisin clay. The Na2CO3-activated Zhisin clay exhibits improved resistance to thermal environments and behaves similar to the Na-type bentonites under different hydrothermal temperatures.
關鍵字(中) ★ 緩衝材料
★ 深地層處置
★ 回脹
★ 膨潤土
關鍵字(英) ★ buffer material
★ deep geological repository
★ swelling behavior
★ bentonit
論文目次 目 錄
摘要............................................................................................................ I
誌謝.......................................................................................................... Ⅵ
目錄.......................................................................................................V III
圖目錄.................................................................................................... XV
表目錄................................................................................................... XXI
第一章 緒論............................................................................................ 1
1.1 研究動機...................................................................................... 1
1.2 研究目的及內容.......................................................................... 2
1.3 論文架構...................................................................................... 4
第二章 文獻回顧(一):緩衝材料的特性.......................................... 6
2.1 緩衝材料功能需求...................................................................... 6
2.2 膨潤土礦物的結構特性.............................................................. 9
2.2.1 膨潤石、膨潤土、蒙脫石的差異...................................... 9
2.2.2 膨潤土礦物結晶結構.......................................................... 9
2.2.3 膨潤土的微觀結構............................................................ 11
2.2.4 膨潤土水合結構................................................................ 14
2.3 深層處置場近場環境的演化.................................................... 16
2.3.1 近場溫度演化與效應........................................................ 16
2.3.2 輻射場................................................................................ 18
2.3.3 地下水化學........................................................................ 19
2.3.4 近場pH值演化................................................................. 25
2.4 膨潤土活化改質研究................................................................ 26
2.4.1 物理改質方法研究............................................................ 27
2.4.2 酸活化改質方法................................................................ 28
2.4.3 離子交換改質方法............................................................ 30
2.4.4 熱學改質方法.................................................................... 32
2.5 膨潤土基緩衝材料性質探討.................................................... 38
2.5.1 第二相對結構之效應........................................................ 38
2.5.2 第二相對工程性質的效應................................................ 39
第三章 文獻回顧(二):黏土-水-電解質系統............................ 52
3.1 擴散雙層理論與壓實黏土回脹行為的適用性........................ 52
3.1.1 擴散雙層理論. .................................................................. 52
3.1.2 擴散雙層厚度的影響因子................................................ 54
3.1.3 電雙層理論應用於壓實黏土的挑戰................................ 55
3.2 離子交換理論與特性................................................................ 57
3.2.1 離子交換反應與原理說明................................................ 57
3.2.2 離子交換方程式................................................................ 59
3.2.3 離子交換遲滯性................................................................ 60
3.3 膨潤土的回脹性質.................................................................... 63
3.3.1 緩衝材料的回脹性質要求................................................ 63
3.3.2 回脹型態分類.................................................................... 63
3.3.3 回脹行為............................................................................ 66
3.3.4 水熱溫度對回脹之關係.................................................... 67
3.3.5 電解質溶液對回脹之影響................................................ 69
3.3.6 pH值對回脹之影響.......................................................... 69
第四章 研究規劃.................................................................................. 77
4.1 試驗材料.................................................................................... 77
4.1.1 日興土................................................................................ 77
4.1.2 BH膨潤土.......................................................................... 77
4.1.3 石英砂................................................................................ 78
4.1.4 石墨.................................................................................... 78
4.2 基本物理性質試驗.................................................................... 79
4.3 礦物性質分析方法.................................................................... 80
4.3.1 化學成分分析.................................................................... 80
4.3.2 可交換陽離子量測............................................................ 80
4.3.3 X光繞射分析.................................................................... 81
4.3.4 傅立葉轉換紅外線光譜儀分析........................................ 81
4.3.5 熱重分析............................................................................ 82
4.3.6 電子顯微鏡觀察................................................................ 83
4.3.7 膨潤土pH值與Eh值量測............................................... 83
4.3.8 氣體層析儀........................................................................ 84
4.4 回脹試驗.................................................................................... 85
4.4.1 回脹試驗方法選擇............................................................ 85
4.4.2 回脹試體製作.................................................................... 85
4.4.3 單向度回脹試驗................................................................ 86
4.5 模擬近場環境之試驗方法........................................................ 88
4.5.1 衰變熱效應........................................................................ 88
4.5.2 輻射效應............................................................................ 88
4.5.3 地下水化學效應................................................................ 89
4.5.4 pH值效應.......................................................................... 89
4.6 日興土活化改質方法................................................................ 92
4.6.1 物理方法............................................................................ 92
4.6.2 酸活化方法........................................................................ 92
4.6.3 離子交換法........................................................................ 92
第五章 膨潤土物理化學性質.............................................................. 96
5.1 基本物理性質分析.................................................................... 96
5.1.1 比重分析............................................................................ 96
5.1.2 粒徑分析............................................................................ 97
5.1.3 阿太堡限度試驗................................................................ 97
5.2 材料性質分析............................................................................ 98
5.2.1 化學組成分析.................................................................... 98
5.2.2 可交換陽離子容量分析.................................................... 98
5.2.3 X光繞射分析.................................................................... 99
5.2.4 紅外光光譜分析................................................................ 99
5.2.5 熱重分析.......................................................................... 100
5.2.6 電子顯微鏡觀察.............................................................. 101
第六章 模擬近場環境之回脹行為探討............................................ 108
6.1 回脹歷時曲線型態.................................................................. 108
6.2 雙曲線模式推估最大回脹量探討.......................................... 110
6.3 日興土與BH膨潤土回脹行為差異性探討........................... 113
6.3.1 黏土含量因素.................................................................. 113
6.3.2 非回脹性礦物效應.......................................................... 114
6.3.3 結構負電荷因素.............................................................. 115
6.3.4 可交換陽離子因素.......................................................... 116
6.4 熱處理對自由回脹行為之效應.............................................. 119
6.4.1 乾燥加熱後試體的回脹行為.......................................... 119
6.4.2 乾燥加熱膨潤土的材料性質.......................................... 123
6.5 水熱溫度對自由回脹行為的影響.......................................... 126
6.6 輻射對自由回脹行為的影響.................................................. 129
6.7 地下水化學對自由回脹的影響.............................................. 131
6.7.1 陽離子效應...................................................................... 131
6.7.2 陰離子效應...................................................................... 134
6.8 pH值對自由回脹的影響........................................................ 139
6.8.1 膨潤土的pH值調節能力............................................... 139
6.8.2 膨潤土在酸性溶液的回脹行為...................................... 141
6.8.3 膨潤土在鹼性溶液的回脹行為...................................... 143
6.9 小結..........................................................................................145
第七章 日興土活化改質研究............................................................ 190
7.1 物理改質法.............................................................................. 191
7.2 酸活化改質法.......................................................................... 193
7.2.1 酸活化改質試驗.............................................................. 193
7.2.2 酸活化機制探討.............................................................. 194
7.3 Na2CO3離子交換程序法........................................................ 197
7.3.1 回脹歷時曲線型態分析.................................................. 197
7.3.2 Na2CO3添加量之效應.................................................... 200
7.3.3 陳化時間之影響.............................................................. 202
7.4 Na2CO3改質日興土的穩定性評估........................................ 204
7.4.1 乾燥加熱.......................................................................... 204
7.4.2 水熱環境.......................................................................... 204
7.5 小結......................................................................................... 206
第八章 BH膨潤土複合材料之回脹行為.......................................... 229
8.1 複合材料的回脹行為研究回顧.............................................. 230
8.1.1 微分模式分析.................................................................. 230
8.1.2 有效黏土乾密度概念...................................................... 231
8.2 石英砂細度對回脹行為之效應............................................. 234
8.3 添加鈍性材料對回脹行為之影響.......................................... 236
第九章 結論與建議............................................................................ 244
9.1 結論......................................................................................... 244
9.2 建議......................................................................................... 247
參考文獻................................................................................................ 249
參考文獻 參考文獻
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,國立中央大學土木工程研究所碩士論文,中壢。
石大鑫,(1993),「中國大陸之膨土」,礦業技術,民國八十二年十二月,第281-288頁。
田永銘、李德河,(1994),「黏土質材料的吸水回脹速率」,中國土木水利工程學刊,第六卷,第二期,第223-232頁。
田永銘,(2001),「放射性廢料處置緩衝材料回脹及熱傳導特性研究(I)」,行政院原子能委員會核能研究所委託研究計畫報告,中壢。
台灣電力公司,(2000),「我國用過核燃料長程處置全程工作規劃書(二○○○年版)」,第3-2頁。
吳平霄、張惠芬、王輔應、郭九杲、趙文霞,(1999),「蒙脫石熱處理產物的掃描電鏡研究」,礦物岩石,第十九卷,第一期,第19-23頁。
吳平霄、張惠芬、郭九霄,(2000),「蒙脫石熱處理產物的微結構變化研究」,地質科學,第三十五卷、第四期、第185-196頁。
何宏平、郭九杲、王德強、林鴻福、楊年華、楊保聯、李麗云,(2001),「仇山酸化鈣基膨潤土的Al和Si魔角旋轉核磁共振譜及脫色率研究」,地球化學,第三十卷,第五期,第470-476頁。
何聖賓,(2002),「土壤化學實驗講義」,國立台灣大學農業化學系土壤研究室。
汪信寶,(2004),「日興土活化改質作為緩衝材料之回脹性質改善效應」,國立中央大學土木工程研究所碩士論文,中壢。
汪信寶、陳文泉、黃偉慶,(2003),「日興土活化改質方法對其回脹性質之效應」,2003年第十屆大地工程研討會論文集,2003年10月2-4日,三芝,台北。
吳冠漢,(2004),「緩衝材料於近場環境下之體積穩定性研究」,國立中央大學土木工程研究所碩士論文,中壢。
邱太銘,(1999),國外用過核燃料/高放射性廢料最終處置現況,物管局簡報資料。
林宏達,(1989),「高溫下黏土的工程性質」,第三屆大地工程學術研討會論文集,第783~793頁。
林志森、蔡世欽、張傳聖,(2000),「岩石與緩衝回填材料熱特性量測分析報告」,台電公司委託我國用過核燃料長程處置潛在母岩特性調查與評估階段前二年報告,工業技術研究院能源與資源研究所,新竹,SNDF-ERL-90-129。
林祐聖,(1994),「顆粒加強複合土壤之回脹行為」,國立中央大學土木工程研究所碩士論文,中壢。
核能研究所,(2003),「處置場設施配置規劃與評估」,台灣電力公司委託研究計劃報告。
黃慈君,(2003),「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,國立中央大學土木工程研究所碩士論文,中壢。
陳文泉、王欣婷、黃偉慶,(2004),「高放射性廢棄物衰變熱對日興土回脹行為的效應探討」,台電核能月刊,第二五四期,63-75頁。
陳文泉、王欣婷、黃偉慶,(2003),「深地層處置場近場環境下緩衝材料回脹行為研究」,2003年第十屆大地工程研討會論文集,2003年10月2-4日,三芝,台北。
陳文泉、黃偉慶,(2002),「深地層處置緩衝材料熱-水力-機械-化學耦合作用探討」,核研季刊,第四十二期,第38-49頁。
陳文泉、黃偉慶,(2004),「改質膨潤土作為緩衝材料之自密性評估」,材料科學與工程,第三十六卷,第三期,第185-194頁。
莊文淵,(1998),「土壤材料之核種遷移吸附特性試驗與研究」,核能研究所內部報告,INER-T2443。
莊文壽、洪錦雄、董家寶,(2000),「深層地質處置技術之研究」,核研季刊,第三十七期、第44-54頁。
陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,國立中央大學土木工程系碩士論文,中壢。
張顧齡,(1998),「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行為之影響」,國立清華大學原子科學系碩士論文,新竹。
黃偉慶,(2000),「放射性廢料處置場緩衝及回填材料物理性質研究」,行政院原子能委員會委託研究計畫研究報告。
須藤俊男,(1974),黏土礦物學,岩波書局,東京。
萬憲銘,(1976),「台灣樟原及瑞美滑潤石黏土之礦物學特性」,礦冶,民國六十五年六月號,第68-79頁。
蔡敏行,(1986),「覆襯土對放射性待處理物料長期貯存效果之研究」,放射性待處理物料管理處委託研究報告。
劉慧玲,(2001),「台東樟原黏土資源之有機黏土備製研究」,國立成功大學資源工程系碩士論文,台南。
Abdullah, W.S., Alshibli, K. A., and Al-Zou'bi, M. S. (1999). “Influence of pore water chemistry on the swelling behavior of compacted clays.” Applied Clay Science, 15, 447-462.
Abu-Zreig, M.M., Al-Akhras, N.M., and Attom, M.F. (2001). “Influence of heat treatment on the behavior of clayey soils.” Applied Clay Science, 20, 129-135.
Achari, G., Joshi, L.R., Bentley, L.R., and Chatterji, S. (1999). “Prediction of the hydraulic conductivity of clays using the electric double layer theory.” Canadian Geotechnical Journal, 36, 783-792.
AECL (1994). Environmental impact statement on the concept for disposal of Canada’s nuclear fuel waste, AECL-10711, COG-93-1.
American Society for Testing and Materials (ASTM). (2000). Annual book of ASTM standards: ASTM, Philadelphia, Pennsylvania.
Andrews, R.W., LaFleur, D.W. and Pahawa, S.B. (1986). Resaturation of backfilled tunnels in granite, Nagra Technical Report NTB-86-27, Nagra, Wettingen, Switzerland.
Aylmore, L.A.G., and Quirk, J.P. (1959). “Swelling of clay-water systems.” Nature, 183, 1752-1753.
Azam, S., Abduljauwad, S.N., Al-Shayea, N.A., and Baghabra, T., Amoudi, O.S. (2000). “Effect of calcium sulfafe on swelling potential of an expansive clay.” Geotechnical Testing Journal, GTJODJ, 23(4), 389-403.
Baker, J.C., Grabowska-Olszewska, B., and Uwins. P.J.R. (1995) “ESEM study of osmotic swelling of bentonite from Radzionkow (Poland).” Applied Clay Science, 9, 465-469.
Balci, S. (1996). “Thermal decomposition of sepiolite and variations in pore structure with and without acid pre-treatment.” Journal of Chemical Technology and Biotechnology, 66, 72-78.
Balci, S. (1999). “Effect of heating and acid pre-treatment on pore size distribution of sepiolite.” Clay Minerals, 34, 647-655.
Balek, V., Malek, Z., Ehrlicher, U., Gyoryova, K., Matuschek, G., and Yariv, S. (2002). “Emanation thermal analysis of TIXOTON (activated bentonite) treated with organic compounds.” Applied Clay Science, 21, 295-302.
Barbour, S.L., and N. Yang. (1993). “A review of the influence of clay- brine interactions on the geotechnical properties of Ca- montmorillonitic clayey soils from western Canada.” Canadian Geotechnical Journal, 30, 920-934.
Barden, L. and Sides, G. (1971). “Sample disturbance in the investigation of clay structure.” Geotechnique, 31(3), 211-222.
Basma, A.A., Al-Homoud, A.S., and Husein, A. (1995). “Laboratory assessment of swelling pressure of expansive soils.” Applied Clay Science, 9, 355-368.
Beles, A.A. and Stanculescu, I.I. (1958). “Thermal treatment as a means of improving the stability of earth masses.” Geotechnique, 8 (4), 158-165.
Blackmore, A.V., and Miller, R.D. (1961). “Tactoid size and osmotic swelling in Ca montmorillonite.” Soil Science Society American Journal, 25, 169-173.
Bohn, H.L., McNeal, B.L., and O’Connor, G.A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons Inc, New York.
Bojemueller, E., Nennemann, A., and Lagaly, G. (2001). “Enhance pesticide adsorption by thermally modified bentonites.” Applied Clay Science, 18, 277-284.
Boukerroui, A., and Ouali, M.S. (2000). “Activation of a bentonite by an ammonium salt: evolution of the exchange capacity and of the specific surface area.” Annals de Chimie Science des Materiaux, 25, 583-590.
Boukerroui, A., and Ouali, M.S. (2002). “Edible oil bleaching with a bentonite activated by micro wave irradiation.” Annals de Chimie Science des Materiaux, 27(4), 73-81.
Bower, C.A. (1958). “Cation exchange equilibria in salt affected soils.” Soil Science, 88, 32-35.
Bray, H.J., Redfern, S.A.T., and Clark, S.M. (1998). “The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study.” Mineralogical Magazine, 62(5), 647-656.
Breu, J., Range, K.J., Kohler, E.E., and Wagner, U. (1993). “Oxidation state of iron at the interface of composite basal lining systems.” Applied Clay Science, 8, 313-320.
Brigatti, M.F., Lugli, C., Montorsi, S., and Poppi, L. (1999). “Effects of exchange cations and layer-charge location on cysteine retention by smectites.” Clays and Clay Minerals, 47(5), 664-671.
Brundo, J., Arcos, D., and QuantiSci L. D. (1999). Processes and features affecting the near field hydrochemistry, Swedish Nuclear Fuel and Waste Management Co., SKB TR-99-29.
Calvet, R., and Prost, R. (1971). ”Cation migration into empty octahedral sites and surface properties of clays.” Clays and Clay Minerals, 19, 175-186.
Campanella, R.G., and Mitchell, J.K. (1968). “Influence of temperature variations on soil behavior.” Journal of the Soil Mechanics and Foundations Divison, ASCE, 94(SM3), 709-734.
Chandrasekhar, S., and Ramaswamy, S. (2002). “Influence of mineral impurities on the properties of kaolin and its thermally treated products.” Applied Clay Science, 21, 133-142.
Chen, M., and Davidson, N. (1955). “The kinetics of the oxygenation of ferrous iron in phosphoric acid solutions.” Journal of American Chemistry Society, 77, 793.
Chen, W.C. (2004). “Suitability of Zhisin Clay as a Buffer Material for Deep Geological Repository: Study on Swelling Behavior.” Proceeding of 14th Pacific Basin Nuclear Conference, Honolulu, Hawaii, Mar. 21-25, 202-209.Chandrasekhar, S., and Ramaswamy, S. (2002). “Influence of mineral impurities on the properties of kaolin and its thermally treated products.” Applied Clay Science, 21, 133-142.
Cho, W.J., Lee J.O., and Kang C.H. (2000). ”Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository.” Annals of Nuclear Energy, 27, 1271 -1284.
Choi, J., Kang, C.H., and Whang, J. (2001). “Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.” Journal of Environmental Science and Health, Part A- Toxic/Hazardous Substance & Environmental Engineering, 26(5), 689-714.
Chorom, M., and Rengasamy, P. (1996). “Effect of heating on swelling and dispersion of different cationic forms of a smectite.” Clays and Clay Minerals, 44(6), 783-790.
Chourabi, B., and Fripiat, J. J. (1981). “Determination of tetrahedral substitution and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites.” Clays and Clay Minerals, 29, 175-186.
Collins, K., and McGown, A. (1974). “The form and function of microfabric features in a variety of natural soils.” Geotechnique, 24(2), 223-254.
Cuevas, J., Leguey, S. and Pusch. R. (1994). “Hydrothermal stability of saponitic clays from the Madrid Basin.” Applied Clay Science, 8, 467-484.
Curti, E., 1993, Modelling bentonite porewaters for the Swiss high- level radioactive waste repository, Nagra Technical Report NTB-93-45 Nagra, Wettingen, Switzerland.
Dakshanamurthy, V. (1978). “A new method to predict swelling of expansive clayey soils.” Geotechnical Engineering, 9, 29-38.
Derjaguin, B.V., Karasev, V.V., and Khromova, E.N. (1986). “Thermal expansion of water in fine pores.” Journal of Colloid and Interface Science, 106, 586-587.
Di Maio, C. (1996). “Exposure of bentonite to salt solution: osmotic and mechanical effects.” Geotechnique, 46(4), 695-707.
Dixon, D.A., Gray, M.N., and Thomas, A.W. (1985). “A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal.” Engineering Geology, 21, 247-255.
Dixon, D.A., and Miller, S.H. (1995). Comparison of the mineralogical composition, physical, swelling and hydraulic properties of untreared sodium bentonites from Canada, the United States and Japan, AECL-11303, COG-95-156.
Dixon, D.A., Wan, A. W-L., Gray, M.N., and Miller, S.H. (1996). Water uptake and stress development in bentonites and bentonite-sand buffer materials, AECL Whiteshell Laboratories, Pinawa, Manitoba, AECL-11591, COG-96-221.
Dufreche, J.F., Marry, V., Bernard, O., and Turq, P. (2001). “Models for electrokinetic phenomena in montmorillonite.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 195, 171-180.
Eberl, D. (1978a). “Reaction series for dioctahedral smectites.” Clays and Clay Minerals, 26, 327.
Eberl, D. (1978b). “The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations.” Geochimica et Cosmochimica Acta, 42, 1-7.
Eberl, D., Whitney, G., and Khoury, H. (1978). “Hydrothermal reactivity of smectite,” American Mineralogist, 63, 401-409.
Egloffstein, T. (1994). “Properties and test methods to assess bentonite used in geosynthetic clay liners.” Proceeding of an international symposium geosynthetic clay liners, 14~15, April, 1994, Nurnberg, Germany.
Egloffstein, T. (1996). “Bentonite as sealing material in geosynthetic clay liners.” in Geosynthetics : Applications, Design and Construction, De Groot, M.B., Den Hoedt, G., & Termaat, R.J., (eds), 799-806.
Egloffstein, T. (2001). “Naural bentonites- influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs,” Geotextiles and Geomembranes, 19, 427-444.
El Barawy, K.A., Girgis, B.S., and N.S., Felix. (1986). “Thermal treatment of some pure smectites.” Thermochimica Acta, 98, 181-189.
El Rayah, H.M.E., and Rowell, D.L. (1973). “The influence of iron and aluminium hydroxides on the swelling of Na-montmorillonite and the permeability of a Na-soil.” Journal of Soil Science, 24, 137-144.
Eriksson, E. (1952). “Cation-exchange equilibria on clay minerals,” Soil Science, 74, 103-113.
Ertem, G. (1972). “Irreversible collapse of montmorillonite.” Clays and Clay Minerals, 20, 199-205.
EUR. (1984). The backfilling and sealing of radioactive waste repositories, Volume 2, Commission of the European Communities, EUR 9115 en.
EUR. (1998). The praclay project: Demonstration test on the Belgian disposal facility concept for high activity vitrified waste, EUR 18047 en.
Evangelou, V.P. and Phillips, R.E. (1988). “Comparison between the Gapon and Vanselow exchange selectivity coefficients.” Soil Science Society American Journal, 52, 379-382.
Fan, Z., and Gu, C. (1996). “Highly-compacted clay mixture as buffer/ backfill materials for geological disposal of high-level radioactive waste.” Proceedings of International Conference on Deep Geological Disposal of Radioactive Waste, Winnipeg, Manitoba, Canada, Sep.16-19, 1996, 5-13~5-18.
Faucon, P., Adenot, F., Jacquinot, J.F., Petie, J.C., Cabrillac, R., and Jorda, M. (1998). “Long-term behavior of cement pastes used for nuclear waste disposal: review of physico-chemical mechanisms of water degradation.” Cement and Concrete Research, 28, 847-857.
Felix, B., Lebon, P., and Plas, M.F. (1996). “A review of the ANDRA’s research programmes on the thermohydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations,” Engineering Geology, 41, 35-50.
Fripiat, J.J., Cloos, P., and Ponclelet, A. (1965). “Comparaison entre les proprietes d’echange de la montmorillonite et d’une resine vis-à-vis des cations alcalines et alcalino-terreux, I., Reversibilite des processus,” Bull. Soc. Chim. Fr., 208-215.
Gaines, G.L. and Thomas, H.C. (1953). “Adsorption studies on clay minerals: II.” Journal of Chemistry Physics, 21, 714-718.
Gapon, Y.N. (1933). “On the theory of exchange adsorption in soils.” J. Gen. Chem., USSR 3, 144-160.
Gascoyne, M. (1996). The evolution of Redox conditions and groundwater geochemistry in recharge-discharge environments on the Canadian Shield, AECL-11682, COG-96-500.
Gates, W.P., Anderson, J.S., Raven, M.D., and Churchman, G.J. (2002). “Mineralogy of a bentonite from Miles, Queenland, Australia and characterisation of its acid activation products.” Applied Clay Science, 20, 189-197.
Gast, R.G. (1972). “ Alkalai metal cation exchange on Chambers mont- morillonite.” Soil Science Scoiety American Proceedings, 36, 14-19.
Gerstl, Z., and Banin, A. (1980). “Fe2+-Fe3+ transformations in clay and resin ion-exchange systems.” Clays and Clay Minerals, 28, 335.
Gilbert, M. and van Bladel, R. (1970). “Thermodynamics and thermo-chemistry of the exchange reaction between NH4 and Mn in a montmorillonite clay.” Journal of Soil Science, 21, 38-49.
Gleason, M.H., Daniel, D.E., and Eykholt, G.R. (1997). “Calcium and sodium bentonite for hydraulic contaminment applications.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(5), 438-445.
Grauer, R. (1990). The chemical behavior of montmorillonite in a repository backfill: selected aspects, NAGRA TR 88-24E, NAGRA, Baden, Switzerland
Gray, M.N., Cheung, S.C.H., and Dixon, D.A. (1984). The influence of sand content on swelling pressures and structure developed in statically compacted Na-bentonite, Atomic Energy of Canada Limited Report, AECL-7825.
Greene-Kelly, R. (1952). “Irreversible dehydration in montmorillonite.” Clay Minerals Bulletin, 221-227.
Greene, R.S.B., Posner A.M., and Quirk, J.P. (1973). “Factors affecting the formation of quasi-crystals of montmorillonite.” Soil Science Society American Proceedings, 37, 457-460.
Greenland, D.J., and Hayes, M.H.B. (1978). The chemistry of soil constituents, John Wiley & Sons, New York.
Grim, R.E. (1968). Clay mineralogy, McGraw-Hill Book Co., New York.
Guillot, X., Al-Mukhtar, M., Bergaya, F., and Fleureau, J.M. (2001). “Effet des Contraintes Hydromecaniques sur L’espace poreux et la Retention d’eau dans une argil,”, Comptes Rendus du XVeme Congres international de Mecanique des Sols et de la Geotechnique (Istanbul, Turquie), 1, 105-108.
Guillot, X. (2002). Couplage Entre Proprietes Microscopiques et Comportment Mecanique d’un Materiau Argileux, These de Doctorat de L’Ecole Centrale Paris.
Hakami E., and Olofsson S.O. (2000). Thermo-mechanical effects from a KBS-3 type repository, Swedish Nuclear Fuel and Waste Management Co., SKB TR-00-05.
Helfferich, F. (1962). Ion Exchange, McGraw-Hill, New York, 95.
Huang, W.H., and Chen, W.C. (2004). “Swelling behavior of a buffer material under simulated near field environment.” Journal of Nuclear Science and Technology, 41(12), 1271-1279.
Hueckel, T.A. (1992). “Water-mineral interaction in hydromechanics of clays exposed to environmental loads: a mixture-theory approach.” Canadian Geotechnical Journal, 29, 1071-1086.
Igwe, C.A., Akamigbo, F.O.R., and Mbagwu, J.S.C. (1999). “Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability.” Geoderma, 92, 111-123.
Israelachvili, J.N. (1985). Intermolecular and Surface Forces, Academic Press, Orlando, Fla.
Israelachvili, J.N., and Adams, G.E. (1978). “Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range of 0-100 nm,” Journal of Chemistry Society, Faraday Transactions. I. 74, 975-1001.
IUPAC (1972). “Manual of symbols and terminology, appendix 2, point 1, colloid and surface chemistry.” Pure Applied Chemistry, 31, 578.
Jardine, P.M. and Sparks, D.L. (1984). “Potassium-calcium exchange in a multireactive soil system: I. Kinetics.” Soil Science Society American Journal, 48, 39-45.
JNC (1999a). H12 project to establish technical basis for HLW disposal in Japan, Supporting Report 1: Geological Environment in Japan, Japan Nuclear Cycle Development Institute, JNC TN1400 99-011.
JNC (1999b). H12 project to establish technical basis for HLW disposal in Japan, Supporting Report 2, JNC TN1400 99-012.
Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B. (2001). “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering,vol. 127(7), 557-567.
Johnston, R.M., and Miller, H.G. (1984). The effect of pH on the stability of smectite, Atomic Energy of Canada Limited, AECL-8366.
Johnston, R.M., and Miller, H.G. (1985). Hydrothermal stability of bentonite-based buffer materials, Atomic Energy of Canada Limited, AECL-8376.
Joshi, R., Gopal Achari, C., Horsfield, D., Nagaraj, T. (1994). “Effect of heat treatment on strength of clays,” Journal of Geotechnical Engineering, 120(6), 1080-1088.
Jozefaciuk, G., Hoffmann, C., and Marschner, B. (2002) “Effect of extreme acid and alkali treatment on pore properties of soil samples.” Journal of Plant Nutrition and Soil Science, 165, 59-66.
Jozefaciuk, G., Hoffmann, C., Manfred, R., and Marschner, B. (2000). “Effect of extreme acid and alkali treatment on surface properties of soils.” Journal of Plant Nutrition and Soil Science, 163, 595-601.
Jury, W.A., Gardner, W.R., and Gardner, W.H. (1991). Soil Physics, 5th ed., John Wiley & Sons, New York.
Keay, J. and Wild, A. (1961). “The kinetics of cation exchange in vermiculite.” Soil Science, 92, 54-60.
Kerr, H.W. (1928). “The nature of base exchange and soil acidity.” Journal of American Society Agronomy, 20, 309-335.
Kleven, R. and Alstad, J. (1996). “Interaction of alkali, alkaline-earth and sulphate ions with clay minerals and sedimentary rocks.” Journal of Petroleum Science and Engineering. 15, 181-200.
Klute, A. (1986). Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 291-326., 2nd ed., American Society of Agronomy, Madison, Wisconsin USA.
Kok, M.V. (2002). “Thermogravimetry of selected bentonites.” Energy Sources, 24, 907-914.
Komadel, P., Madejova, J., Janek, M., Gates, W.P., Kirkpatrick, R.J., and Stucki, J.W. (1996a). “Dissolution of hectorite in inorganic acids.” Clays and Clay Minerals, 44(2), 228-236.
Komadel, P., Bujdak, J., Madejova, J., Sucha, V., and Elsass, F. (1996b). “Effect of non-swelling layers on the dissolution of reduced-charged montmorillonite in hydrochloric acid.” Clay Minerals, 31, 333-345.
Komine, H., and Ogata, N. (1994). “Experimental study on swelling characteristics of compacted bentonite.” Canadian Geotechnical Journal, 31, 478-490.
Komine, H., and Ogata, N. (1996). “Prediction for swelling characteristics of compacted bentonite.” Canadian Geotechnical Journal, 33, 11-22.
Komine, H., Ogata, N., Takao, H., Nakashima, A., and Osada, T. (1999). “A trial design of buffer materials from the viewpoint of self-sealing.” Proceedings of Radioactive Waste Management and Environmental Remediation, ASME.
Krishnamoorthy, C., and Overstreet, R. (1949). “Theory of ion exchange relationships.” Soil Science, 68, 307-315.
Krumhansl, J.L. (1982). “Mineralogical stability of a bentonite backfill in a bedded salt repository environment.” Abstract, Proceedings of Annual Meeting Geology Society American.
Kumar, P., Jasra, R.V., and Bhat, T.S.S.G. (1995). “Evolution of porosity and surface acidity in montmorillonite clay on acid activation.” Industrial Engineering Chemistry Research, 34(3), 1440-1448.
Laaksoharju, M., Gurban, I., and Shaarman, C. (1998). Summary of hydrochemical conditions at Aberg, Beberg and Ceberg, Swedish Nuclear Fuel and Waste Management Co., SKB TR-98-03.
Laffer, B.G., Posner, A.M., and Quirk, J.P. (1966). “Hysteresis in the crystalline swelling of montmorillonite.” Clay Mineral, 6, 311-321.
Laird, D.A. (1999). “Layer charge influences on the hydration of expandable 2:1 phyllosilicates.” Clays and Clay Minerals, 47(5), 630-636.
Lajudie, A., Raynal, J., Petit, J.C., and Toulhoat, P. (1994). “Clay-based materials for engineered barriers: A review.” Materials Research Society Symposium Proceedings, 353, 221-230.
Levy, R., and Francis, C.W. (1975). “Demixing of sodium and calcium ions in montmorillonite crystallites.” Clays and Clay Minerals, 23, 475-476.
Lide, D.R. (2001). CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data, 82nd ed., CRC Press, New York.
Lin, T.T., Sheu, C., Chang, J.E., and Cheng, C.H. (1998). “Slaking mechanisms of mudstone liner immersed in water.” Journal of Hazardous Materials, 58, 261-273.
Lindsay, W.L. (1979). Chemical equilibria in soils. John Wiley and Sons, Canada.
Liu, J., Yamada, H., Kozaki, T., Sato, S., and Ohashi, H. (2003a). “Effect of silica sand on activation energy for diffusion of sodium ions in montmorillonite and silica sand mixture.” Journal of Contaminant Hydrology, 61, 85-93.
Liu, J., Kozaki, T., Horiuchi, Y., and Sato, S. (2003b). “Microstructure of montmorillonite/silica sand mixture and its effects on the diffusion of strontium ions.” Applied Clay Science, 23, 89-95.
Ma, C., and Hueckel, T. (1992). “Stress and pore pressure in saturated clay subjected to heat from radioactive waste: a numerical simulation.” Canadian Geotechnical Journal, 29, 1087-1094.
Madsen, F.T., 1999, “International Society for Rock Mechanics Commission on Swelling Rocks and Commission on Testing Methods: Suggested methods for laboratory testing of swelling rocks.” International Journal of Rock Mechanics and Mining Sciences, 36, 291-306.
Madsen, F.T., and Muller-Vonmoos, M. (1989). “The swelling behaviour of clays.” Applied Clay Science, 4, 143-156.
Maes, A. and Cremers, A. (1975). “Cation-exchange hysteresis in montmorillonite: A pH-dependent effect.” Soil Science, 119, 198-202.
Maio, C.D. (1996). ”Exposure of bentonite to salt solution:osmotic and mechanical effects.” Geotechnique, 46(4), 695-707.
McBride, M. (1994). Environmental chemistry of soils. Oxford University Press, New York.
Mckinley, I.G. (1985). The geochemistry of the near-field, Swiss Federal Institute for Reactor Research, Wurenlingen, NAGRA TR 84-48.
Mckinley, I.G., and Kawamura, H. (1999). “HLW engineered barrier design optimisation for a sedimentary host rock.” Proceedings of Radioactive Waste Management and Environmental Remediation ASME.
Mclaughlin, R. (1977). “A study of the differential scheme for composite materials.” International Journal of the Engineering Science, 15, 237-244.
Meyer, D., Howard, J.J. (1983). Evaluation of clays and clay minerals for application to repository sealing, Office of Nuclear Waste Isolation Technical Report ONWI-486, pp.12-30.
Mitchell, J.K. (1993). Fundamentals of Soil Behavior. 2nd ed., University of California, Berkeley.
Mosser, C., Michot, L.J., and Villieras, F. (1997). “Migration of cations in copper(II)- exchanged montmorillonite and laponite upon heating.” Clays and Clay Minerals, 45(6), 789-802.
Myriam, M., Suarez, M., and Martin-Pozas, J.M. (1998). “Structural and textural modifications of palygorskite and sepiolite under acid treatment.” Clays and Clay Minerals, 46, 225-231.
NAGRA (1994). Kristallin-I safety assessment report, Nagra Technical Report NTB-93-22, Nagra, Wettingen, Switzerland.
Nayak, N.V., and Christensen, R.W. (1971). “Swelling characteristics of compacted expansive soils.” Clays and Clay Minerals, 19, 251-161.
NEA (1985). Technical appraisal of the current situation in the field of radioactive waste management, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
NEA (1991). Disposal of radioactive waste: can long-term safety be evaluated? An international collective opinion, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
NEA (1993). The cost of high-level waste disposal in geological repositories : An analysis of factors affecting cost estimates, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
NEA (1995). The management of long-lived radioactive waste: The environmental and ethical basis of geological disposal. A collective opinion of the NEA radioactive waste management committee, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
Newman, A.C.D. (1987). Chemistry of clays and clay minerals, Mineralogical Society Monograph, No. 6, Longman Scientific & Technical, Wiley-Interscience, New York.
Norrish, K. (1954). “The swelling of montmorillonite.” Discussions of the Faraday Society, 120-134.
Norrish, K., and Quirk, J. (1954). “Crystalline swelling of montmorillonite, use of electrolytes to control swelling.” Nature, 173, 255-257.
Ochs, M., Lothenbach, B., Shibata, M., and Yui, M. (2004). “Thermodynamic modeling and sensitivity analysis of porewater chemistry in compacted bentonite.” Physics and Chemistry of the Earth, 29, 129-136.
O’Conner, G.A., and Kemper, W.D. (1969). “Quasicrystals in Na-Ca systems.” Soil Science Society American Journal, 33, 464-470.
Onal, M., Sarikaya, Y., Alemdaroglu, T., and Bozdogan, I. (2002). “The effect of acid activation on some physicochemical properties of a bentonite.” Turkish Journal of Chemistry, 26, 409-416.
Oscarson, D.W. (1994). “Comparsion of measured and calculated diffusion coefficients for iodide in compacted clays.” Clay Minerals, 29, 145-151.
Oscarson, D.W., Dixon, D.A. and Gray, M.N. (1990). “Swelling capacity and permeability of an unprocessed and a processed bentonite clay.” Engineering Geological, 28, 281-289.
Oscarson, D.W., Dixon, D.A., and Onofrei, M. (1997). Aspects of Clay/Concrete Interactions, AECL Whiteshell Laboratories, Pinawa, Manitoba, AECL-11715, COG-96-562-I.
Oster, J.D., and Sposito, G. (1980). “The Gapon coefficient and the exchangeable sodium percentage-sodium adsorption ratio relation.” Soil Science Society America Journal, 44, 258-260.
Paaswell, R.E. (1967). “Temperature effects on clay consolidation.” Journal of the Soil Mechanics and Foundations Division, ASCE, 9-21.
Parfitt, R.L. (1978). “Anion adsorption by soils and soil materials.” Advances in Agronomy, 30, 1-50.
Parker, A., and Rae, J.E. (1998). Environmental interactions of clays, Springer, Berlin, Germany.
Pearson F.J., and Scholtis, A. (1993). Chemistry of reference waters of the crystalline basement of northern Switzerland for safety assessment studies, Nagra Technical Report NTB-93-07, Nagra, Wettingen, Switzerland.
Pesquera, C., Gonzalez, F., Benito, I., Blanco, C., Mendioroz, S., and Pajares, J. (1992). “Passivation of a montmorillonite by the silica created in acid activation.” Journal of Material Chemistry, 2, 907-911.
Pratt, P.F., Whittig, L.D., and Grover, B.L. (1962). “Effect of pH on the sodium-calcium exchange equilibria in soils.” Soil Science Society American Journal, 26, 227-230.
Prost, R., Koutit, T., Benchara, A., and Huard, E. (1998). “State and location of water adsorbed on clay minerals: consequences of the hydration and swelling-shrinkage phenomena.” Clays and Clay Minerals, 46(2), 117-131.
Pusch, R. (1983). Stability of deep sited smectite minerals in crystalline rock-chemical aspects. KBS TR-83-16.
Pusch, R., and Karnland, O. (1988). Hydrothermal effects on mont- morillonite: A preliminary study, SKB TR 88-15, Clay Technology AB.
Pusch, R., and Hokmark, H. (1990). “Basic model of water- and gas- flow through smectite clay buffers,” Engineering Geology, 28, 379-389.
Pusch, R., Karnland, O., and Hokmark, H. (1990). GMM- A general microstructural model for qualitative and quantitative studies of smectite clays, SKB TR 90-43, SKB, Stockholm.
Pusch, R., and Karnland, O. (1990). Preliminary report on longevity of montmorillonite clay under repository-related conditions, SKB Technical Report 90-44, Stockholm, Sweden.
Pusch, R., Karnland, O., Lajudie, A., and Decarreau, A. (1992). MX-80 clay exposed to high temperatures and gamma radiation, SKB TR 93-03.
Pusch, R. (1994). Waste disposal in rock, Elsevier, New York.
Pusch, R., and Karnland, O. (1996). “Physico/chemical stability of smectite clays.” Engineering Geology, 41, 73-85.
Pusch, R., and Takase, H. (1998). Chemical processes causing cementation in heat-affected smectite- the Kinnekulle bentonite, SKB TR-98-25, Stockholm.
Pusch, R., and Takase, H. (1998). Chemical processes causing cementation in heat-affected smectite- the Kinnekulle bentonite, SKB TR-98-25, Stockholm, Sweden.
Pusch, R. (2001). The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions, SKB TR-01-08, Stockholm, Sweden.
Pushkareva, R., Kalinichenko, E., Lytovchenko, A., Pushkarev, A., Kadochnikov, V., and Plastynina, M. (2002). “Irradiation effect on physico-chemical properties of clay minerals.” Applied Clay Science, 21, 117-123.
Quirk, J.P., and Aylmore, L.A.G. (1971). “Domains and quasi-crystalline regions in clay systems.” Proceedings of Soil Science Society America, 35, 652-654.
Ramirez, S., Cuevas, J., Vigil, R., and Leguey, S. (2002). “Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions.” Applied Clay Science, 21, 257-269.
Rao, S.M., Sridharan, A., and Chandrakaran, S. (1989). “ Influence of drying on the liquid limit behaviour of a marine clay.” Geotechnique, 39, 715-719.
Ravichandran, J., and Sivasankar, B. (1997). “Properties and catalytic of acid-modified montmorillonite and vermiculite.” Clays and Clay Minerals, 45(6), 854-858.
Rengasamy, P. (1982). “Dispersion of calcium clay.” Australian Journal Soil Research, 20, 153-157.
Rienks, J. (1998). “Comparison of results for chemical and thermal treatment of contaminated dredged sediments.” Water Science and Technology, 37, 355-362.
Risoul, V., Renauld, V., Trouve, P., and Gilot, P. (2002). “A laboratory pilot study of thermal decontamination of soils pollutes by PCBs- Comparison with thermogravimetric analysis.” Waste Management, 22, 61-72.
Sato, T., Watanabe, T., and Otsuka, R. (1992). “Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites.” Clays and Clay Minerals, 40(1), 103-113.
Savage, D. (1995). The Scientific and Regulatory Basis for the Geological Disposal of Radioactive Waste, John Wiley and Sons, New York.
Sawhney, B.L. (1966). “Kinetics of cesium sorption by clay minerals.” Soil Science Society American Proceedings, 30. 399-417.
Seed, H.B., Woodward, R.J., Jr., and Lundgren, R. (1962). “Prediction of swelling potential for compacted clays.” Journal of the Soil Mechanics and Foundations Divison, ASCE, 88(SM3), 53-87.
Shainberg, I., and Kaiserman, A. (1969). “Kinetics of the formation and breakdown of Ca-montmorillonite tactoids.” Soil Science Society America Journal, 33, 547-551.
Shooshpasha, I., Mohamed, A.M.O., Yong, R.N., (1996). “Effect of swelling pressure on local volume change in unsaturated sand-bentonite buffer material.” Materials Research Society, Symposium Proceedings, 412, 667-674.
Sherif, M.A., Ishibashi, I., and Medhin, B.W. (1982). “Swell of Wyoming montmorillonite and sand mixtures.” Journal of the Geotechnical Engineering Division, ASCE, 108(GT1), 33-45.
Singhal, J.P., Singh, N., and Singh, R.P. (1977). “Hysteresis and reversibility in calcium ammonium exchange in bentonite.” Journal of Indian Chemistry Society, 54, 555-559.
Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling behaviour of soil-bentonite mixtures.” Canadian Geotechnical Journal, 33, 808-814.
SKB (1983). Final Storage of Spent Nuclear Fuel SKB-3, I General.
SKB (1999). SR 97, Post-closure safety, deep repository for spent nuclear fuel, Main Report, Vol. 1, Swedish Nuclear Fuel and Waste Management Co., SKB TR-99-06.
SKB (1999). SR 97, Processes in the repository evolution, Background Report to SR 97, Swedish Nuclear Fuel and Waste Management Co., SKB TR-99-07.
SKB (1999). SR 97, Waste, repository design and sites, background report to SR97, Swedish Nuclear Fuel and Waste Management Co., SKB TR-99-08.
SKB (2001). The microstructure of MX-80 clay with respect to its bulk physical properties under different environmental conditions, Swedish Nuclear Fuel and Waste Management Co., SKB TR-01-08.
Smith, D.C. and Fey, M.V. (1996). “Chemical manipulation of soil for sealing landfills.” Applied Geochemistry, 11, 325-329.
Sowers, G.F. (1979). Introductory soil mechanics and foundations, 4th ed., Macmillan, New York, 37-39.
Sposito, G. (1984). The surface chemistry of soils, University of California, Oxford, USA.
Sposito, G., Holtzclaw, K.M., Charlet, L., Jouany, C., and Page, A.L. (1983). “Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media.” Soil Science Society American Journal, 47, 51-56.
Sridharan, A., and Venkatappa, R.G. (1973). “Mechanisms controlling volume change of saturated clays and the role of the effective stress concept.” Geotechnique, 23, 359-382.
Sridharan, A., Rao, S.M., and Gajarajan, V.S. (1990). “Effect of sulfate contamination on the volume change behavior of bentonite.” Physico-Chemical Aspects of Soil and Related Materials, ASTM STP 1095, Hoddinott, K.B., and Lamb, R.O. (eds.), American Society for Testing and Materials, 60~68.
Stevenson, D.R. Brown, A., Davison, C.C., Gascoyne, M., McGregor, R.G., Ophori, D.U., Scheier, N.W., Stanchell, F., Thorne, G.A., and Tomsons, D.K., (1996). A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell Research Area, Southeastern Manitoba, Canada, AECL-11331, COG-95-271.
Suarez-Barrios, M., Santiago-Buey, C., Garcia-Romero, E., and Martin- Pozas, J.M. (2001). “Textural and structural modifications of saponite from Cerro del Aguila by acid treatment.” Clay Minerals, 36, 483-488.
Sumner, M.E. (2000). Handbook of soil science, CRC, USA.
Tabikh, A.A., Barshad, I., and Overstreet, R. (1960). “Cation exchange hysteresis in clay minerals.” Soil Science, 90, 219-226.
Tang, L., and Sparks, D.L. (1993). Cation-exchange kinetics on montmorillonite using pressure-jump relaxation.” Soil Science Society American Journal, 57, 42-46.
Tessier, D., Dardaine, M., Beaumont, A., and Jaunet, A.M. (1998). “Swelling pressure and microstructure of an activated swelling clay with temperature.” Clay Minerals, 33, 255-267.
Thomas, G.W. (1977). “Historical developments in soil chemistry: ion exchange.” Soil Science Society American Journal, 41, 230-238.
Thurairajah, A. (1970). “A study of swelling characteristics of a remoulded clay.” Geotechnical Engineering, 1, 29-39.
Towhata, I., Kuntiwattanakul, P., and Kobayashi, H. (1993). “A preliminary study on heating of clays to examine possible effects of temperature on soil-mechanical properties.” Soils and Foundations, 33(4), 184-190.
van Bladel, R., and Laudelout, H. (1967). “Apparent irreversibility of ion-exchange reactions in clay suspensions.” Soil Science, 104, 133-137.
van Olphen, H. (1977). An introduction to clay colloid chemistry. 2nd ed., Wiley Interscience, New York.
Vanselow, A.P. (1932). “Equlibria of the base-exchange of bentonites, permutites, soil colloids, and zeolites.” Soil Science, 33, 95-113.
Verburg, K., and Baveye, P. (1994). “Hysteresis in the binary exchange of cations on 2:1 clay minerals: a critical review.” Clays and Clay Minerals, 42(2), 207-220.
Verburg, K., and Baveye, P. (1995) “Cation exchange hysteresis and the dynamics of the formation and breakdown of montmorillonite quasi-crystals.” Soil Science Society American Journal, 59, 1268-1273.
Vicente-Rodriguez, M.A., Suarez-Barrios, M., Lopez-Gonzalez, J.D., and Banares-Munoz, M.A. (1994). “Acid activation of a ferrous saponite (griffithite): physico-chemical characterization and surface area of the products obtained.” Clays and Clay Minerals, 42(6), 724-730.
Vydra, V., Vodak, F., Kapickova, O., Hoskova, S. (2001). “Effect of temperature on porosity of concrete for nuclear-safety structures.” Cement and Concrete Research, 31, 1023-1026.
Wang, M.C., Benway, J.M., and Arayssi, A.M. (1990). “The effect of heating on engineering properties of clays.” Physico-Chemical Aspects of Soil and Related Materials, ASTM STP 1095, Hoddinott K.B. and Lamb, R.O., (eds.), American Society for Testing and Materials, Philadelphia, 138-158.
Wersin, P. (2003). “Geochemical modeling of bentonite porewater in high-level waste repositories.” Journal of Contaminant Hydrology, 61, 405-422.
Wilson, M.J. (1994). Clay mineralogy: spectroscopic and chemical determinative methods, Chapman & Hall, New York.
Yeung, A.T. (1992). “Diffuse double-layer equations in SI units.” Journal of Geotechnical Engineering, 118(12). 2000-2005.
Yildiz, N., and Calimli, A. (2002). “Alteration of three Turkish bentonites by treatment with Na2CO3 and H2SO4.” Turkish Journal of Chemistry, 26, 393-401.
Yong, R.N., and Warkentin, B.P. (1975). Soil properties and behaviour, Amsterdam Oxford, New York.
Yong, R.N. (1999). “Overview of modeling of clay structure and interactions for prediction of waste isolation barrier performance.” Engineering Geology, 54, 83-91.
Zhang, F., Low, P.F., and Roth, C.B. (1995). “Effects of monovalent, exchangable cations and electrolytes on the relation between swelling pressure and interlayer distance in montmorillonite.” Journal of Colloid and Interface Science, 173, 34-41.
Zhang F.S., Zhang, X.N., and Yu, T.R. (1991a). “Reaction of hydration ions with variable charge soils. I. Mechanisms of reaction.” Soil Science, 151(6), 436-443.
Zhang F.S., Ji, G.L., and Yu, T.R. (1991b). “Reaction of hydration ions with variable charge soils. II. Kinetics of reaction.” Soil Science, 152 (1), 25-32.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2005-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明