博碩士論文 109426016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.164.47
姓名 林家慈(Jia-Ci Lin)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Locusbots系統之揀貨派車問題研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,由於資訊科技的發達與網路的普及,促使電子商務的興起,網路購物成為消費者主流的購物方式,為了及時因應消費者的需求,勢必要加快到貨的速度,因而增加物流中心的處理難度與作業量,對揀貨作業影響甚是明顯。為了增加物流中心的揀貨效率,同時降低人力成本,許多自動化系統在近幾年陸續被提出。企業紛紛投資其物流中心來強化其物流能力,讓物流中心提供快速且完善的物流服務給消費者。
「類Locusbots系統」利用動態路徑規劃,具有揀貨行走路線流暢的優點,能夠迅速更新揀貨環境資訊,並因應各種情況,規劃最有利的揀貨路徑。揀貨員各自負責一個揀貨區域,無人搬運車將揀貨箱運送至揀貨員面前,讓揀貨員進行揀貨作業。揀貨員無需到處走動,消除揀貨員非生產性的行走時間,揀貨員只需熟悉負責的揀貨區域的產品,能夠更專注的進行揀貨作業,提升揀貨員的生產力;有效因應銷售的淡旺季,應對訂單的彈性變化,進行Locusbots的擴展和縮減,降低人力成本,提高揀貨的準確率。
「類Locusbots系統」的揀貨流程主要分為三個部分。第一部分,將訂單分配給無人搬運車,作為無人搬運車進入物流中心揀貨依據;第二部分,將無人搬運車派車至揀貨區域,進行訂單揀貨作業;第三部分,無人搬運車抵達揀貨區域等候線上,揀貨區域選擇哪一台無人搬運車,進入揀貨區域進行揀貨作業。
基於上述原因,本研究將針對「類Locusbots系統」中的揀貨策略進行研究,以派車法則作為主體,同時考慮訂單選取法則、揀貨區域選擇AGV法則,期望透過完整的模擬實驗與績效分析,增加對此類問題的了解,對未來的類似研究,也將有相對之貢獻。
摘要(英) The Locusbots system uses dynamic path planning, which has the advantage of smooth picking routes, can quickly update picking environment information, and plan the most favorable picking paths according to various situations. The pickers are each responsible for a picking area, and the AGV transports the picking box to the picker, allowing the picker to carry out the picking operation. The picker does not need to walk around, eliminating the unproductive walking time. The picker only needs to be familiar with the products in the responsible picking area, and can focus more on the picking operation and improve the productivity; effective response in the off-peak season of sales, in response to the elastic changes of orders, the expansion and reduction of Locusbots will be carried out to reduce labor costs and improve the accuracy of picking.
The picking process of the Locusbots system is mainly divided into three parts. The first part is to assign the order to the AGV, as the basis for the AGV to enter the logistics center for picking; the second part, the AGV is sent to the picking area for order picking; the third part, the AGV arrive at the picking area and wait on the line, choose which AGV in the picking area, and enter the picking area to carry out the picking operation.
Based on the above reasons, this study will focus on the picking strategy in the Locusbots system, with the dispatching rule as the main body, and the order selection rule and the picking area selection AGV rule at the same time.
關鍵字(中) ★ 物流中心
★ 無人搬運車
★ 派車法則
★ 揀貨區域選擇AGV 法則
★ 訂單選取法則
關鍵字(英) ★ logistics center
★ AGV
★ dispatching rules
★ picking area selection AGV rules
★ order selection rules
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究環境 3
1.5 論文架構 5
第二章 文獻探討 7
2.1 類Locusbots系統 7
2.1.1 Locusbots 機器介紹 8
2.1.2 Locusbots 系統環境與作業流程 11
2.2 物流 (Logistics) 13
2.2.3 物流的定義(Logistics definition) 14
2.2.4 物流中心(Distribution center) 16
2.3 倉儲規劃(Warehouse design) 20
2.3.1 倉儲設計(Warehouse design) 20
2.3.2 走道設計(Aisle design) 25
2.4 訂單揀貨規劃(Order picking planning) 30
2.4.1 揀貨政策(Picking policy) 30
2.4.2 路徑策略(Routing strategy) 35
2.5 AGV派車法則(AGV Dispatching Rule) 43
第三章 研究方法 47
3.1 問題說明 47
3.2 方法架構與流程 47
3.3 訂單選取問題 49
3.3.1 隨機選取法 50
3.3.2 漸增權重懲罰值最小法 50
3.4 揀貨區域選擇AGV問題 52
3.4.1 隨機選擇法 52
3.4.2 最少剩餘揀貨區域法 52
3.5 派車問題 54
3.5.1 隨機派車法 55
3.5.2 最短行走距離法 55
3.5.3 最大揀貨數量法 56
3.5.4 最小揀貨數量法 56
3.5.5 最大(揀貨數量/行走距離)比例法 57
3.5.6 最小(揀貨數量/行走距離)比例法 58
3.5.7 最少剩餘揀貨時間法 60
3.5.8 最早最悲觀可開始揀貨時間法 61
3.5.9 最早最樂觀可開始揀貨時間法 62
3.5.10 最早平均可開始揀貨時間法 64
3.5.11 最早Hurwicz Decision 可開始揀貨時間法 66
第四章 模擬實驗與分析 69
4.1 模擬實驗設計 69
4.1.1 揀貨環境設定 69
4.1.2 實驗訂單設定 71
4.1.3 揀貨環境假設 71
4.1.4 實驗因子組合 72
4.2 績效評估指標 74
4.3 統計分析 75
4.3.1 分析說明 75
4.3.2 依「系統總執行時間(TST)」為績效評估指標 75
4.3.3 依「在系統內時間(TIS)」為績效評估指標 97
4.4 實驗結論 119
第五章 研究結論與建議 122
5.1 研究結論 122
5.2 未來研究建議 124
參考文獻 125
中文文獻 125
英文文獻 127
參考文獻 中文文獻
1.中華民國物流協會(2018)。《物流運籌管理》。中華民國物流協會。
2.日本流通經濟研究所,日本文摘編譯中心(1991)。《 流通事典 》。故鄉出版股份有限公司。
3.王孔政、褚志鵬,2007,「供應鏈管理」,華泰文化,台北,初版。
4.吳宇晴(2018)。《 考量需求不確定性與上游運輸整合之物流中心選址問題 》。碩士論文,國立交通大學。)
5.吳豐全。「多載量AGV的控制方法」。碩士論文,國立中央大學工業管理研究所,2001。
6.呂家棟(2013)。應用修正後的群聚方法於解決訂單批次化問題。國立中央大學工業管理研究所碩士發表之論文,桃園市。
7.邱耀弘(2008)。 以分群為基礎之訂單批量化方法探討。國立中央大學工業管理研究所碩士發表之論文,桃園市。
8.胡恆毓(2018)。臺灣區域型雞蛋洗選集貨物流中心最適選址之研究。國立臺灣大學農業經濟學研究所碩士論文,台北市。
9.孫海蛟與董福慶(1995)。 物流中心儲位管理。 經濟部發行;機械工業雜誌總經銷,台北,初版。
10.張簡復中,2010,「物流管理」,新文京開發,台北,二版。
11.郭., Kuo, P., 陳., & Chen, M. (2010). 電子產業專業物流公司物流中心選址之研究.
12.郭祐嘉(2016)。運用關聯規則的儲位佈置法以提高倉儲揀貨效率-以H公司為例。國立高雄應用科技大學工業工程與管理系碩士班碩士論文,高雄市。
13.陳姿穎(2010) 。 在具有 RFID 的分區揀貨倉儲環境下之揀貨問題探討。國立中央大學工業管理研究所碩士發表之論文,桃園市。
14.陳暉江(2004) 。 具兩條以上橫向走道之物流中心揀貨路徑規劃研究。國立中央大學工業管理研究所碩士發表之論文,桃園市。
15.曾裕茵(2003)。物流中心之訂單批次化與揀貨路徑問題探討。國立中央大學工業管理研究所碩士論文,桃園縣。
16.趙廷偉(2012) 。 具語音引導揀貨系統之揀貨作業的執行與績效。國立中央大學工業管理研究所碩士發表之論文,桃園市。
17.劉士瑄(2006)。光罩材料之最佳儲位與揀取路徑規劃。元智大學工業工程與管理學系碩士論文,桃園縣。
18.賴順良(2009)。 物流中心之訂單選取與揀貨路徑規劃的研究。國立中央大學工業管理研究所碩士發表之論文,桃園市。

英文文獻
1.Accorsi, R., Manzini, R., & Maranesi, F.(2014). A decision-support system for the design and management of warehousing systems. Computers in Industry, 65(1), 175-186.
2.Alipour, M., Mehrjedrdi, Y. Z., & Mostafaeipour, A.(2020). A rule-based heuristic algorithm for on-line order batching and scheduling in an order picking warehouse with multiple pickers. RAIRO-Operations Research, 54(1), 101-107.
3.Altarazi, S. A., & Ammouri, M. M. (2018). Concurrent manual-order-picking warehouse design: a simulation-based design of experiments approach. International Journal of Production Research, 56(23), 7103-7121.
4.Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F.(2015). A comparative analysis of different paperless picking systems. Industrial Management & Data Systems.
5.Bolaños Zuñiga, J., Saucedo Martínez, J. A., Salais Fierro, T. E., & Marmolejo Saucedo, J. A.(2020)Optimization of the Storage Location Assignment and the Picker-Routing Problem by Using Mathematical Programming. Applied Sciences, 10(2), 534.
6.Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F.(2019). Design of diagonal cross-aisle warehouses with class-based storage assignment strategy. The International Journal of Advanced Manufacturing Technology, 100(9-12), 2521-2536.
7.Boysen, N., De Koster, R., & Füßler, D.(2020). Working Paper The forgotten sons: Warehousing systems for brick-and-mortar retail chains. European Journal of Operational Research.
8.Bozer, Y. A., & Kile, J. W. (2008). Order batching in walk-and-pick order picking systems. International Journal of Production Research, 46(7), 1887-1909.
9.Cano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A.(2017). An evaluation of picking routing policies to improve warehouse efficiency. International Journal of Industrial Engineering and Management, 8(4), 229-238.
10.Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P.(2019, June). Genetic algorithms for the picker routing problem in multi-block warehouses. In International Conference on Business Information Systems (pp. 313-322). Springer, Cham.
11.Cano, J. A., Gomez, R. A., & Salazar, F.(2017). Routing policies in multi-parallel warehouses: an analysis of computing times. Espacios, 38(51), 23.
12.Cergibozan, Ç., & Tasan, A. S.(2019). Order batching operations: an overview of classification, solution techniques, and future research. Journal of Intelligent Manufacturing, 30(1), 335-349.
13.Cergibozan, Ç., & Tasan, A. S.(2020)Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center. Journal of Intelligent Manufacturing, 1-13.
14.Chan, F. T. S., & Chan, H. K. (2011). Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Systems with Applications, 38(3), 2686–2700.
15.Chawla, V. K.; Chanda, A. K.; Angra, Surjit; Rani, Sushma (2019). Effect of nature-inspired algorithms and hybrid dispatching rules on the performance of automatic guided vehicles in the flexible manufacturing system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 391–.
16.Chawla, V.K.; Chanda, A.K.; Angra, S.; Rani, Sushma (2018). Simultaneous Dispatching and Scheduling of Multi-Load AGVs in FMS-A Simulation Study. Materials Today: Proceedings, 5(11), 25358–25367
17.Chen, F., Wang, H., Xie, Y., & Qi, C.(2016). An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408.
18.Chen, F., Xu, G., & Wei, Y.(2019). Heuristic routing methods in multiple-block warehouses with ultra-narrow aisles and access restriction. International Journal of Production Research, 57(1), 228-249.
19.Chen, M. C., & Wu, H. P.(2005). An association-based clustering approach to order batching considering customer demand patterns. Omega, 33(4), 333-343.
20.Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
21.Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K.(2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
22.Chia-Nan Wang, Li-Chin Chen (2012). The heuristic preemptive dispatching method of material transportation system in 300. , 23(5), 2047–2056.
23.Chow, G., Heaver, T. D., & Henriksson, L. E. (1994). Logistics performance: definition and measurement. International journal of physical distribution & logistics management.
24.Daniels, R. L., Rummel, J. L., & Schantz, R.(1998). A model for warehouse order picking. European Journal of Operational Research, 105(1), 1-17.
25.Da-Yin Liao; Chia-Nan Wang (2006). Differentiated preemptive dispatching for automatic materials handling services in 300. , 29(9-10), 890–896.
26.De Koster, M. B. M., Van der Poort, E. S., & Wolters, M.(1999). Efficient orderbatching methods in warehouses. International Journal of Production Research, 37(7), 1479-1504.
27.De Koster, R. B., Johnson, A. L., & Roy, D.(2017). Warehouse design and management.
28.De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481–501. doi:10.1016/j.ejor.2006.07.009
29.De Koster, R., Le-Duc, T., & Roodbergen, K. J.(2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
30.De Vries, J., De Koster, R., & Stam, D.(2016). Aligning order picking methods, incentive systems, and regulatory focus to increase performance. Production and Operations Management, 25(8), 1363-1376.
31.Dukic, G., Česnik, V. and Opetuk, T., “Order-picking methods and technologies for greener warehousing,” International Scientific Conference MOTSP, Vol. 52, pp. 23-31, 2010.
32.Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H.(2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
33.Feng, A.L., Jia, Z., & Kong, J.L.(2018, May). The comparative study of order pick location distribution characteristics impacting on the picking path in the distribution center. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1090-1094). IEEE.
34.Frazelle, E.(2002). World-class Warehousing and Material Handling, McGraw Hill.
35.Frazelle, E.(2002). Supply chain strategy: the logistics of supply chain management. McGraw Hill.
36.Fu, C., Wang, Y., Gu, Y., Ma, M., & Xue, T.(2011, April). Routing optimization of high-level orderpickers in a rectangular warehouse. In 2011 International Conference on Consumer Electronics, Communications and Networks(CECNet)(pp. 4388-4391). IEEE.
37.Geng, Y., Li, Y., & Lim, A.(2005, November). A very large-scale neighborhood search approach to capacitated warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI′05)(pp. 8-pp). IEEE.
38.Gil-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., & Duarte, A.(2020). GRASP with Variable Neighborhood Descent for the online order batching problem. Journal of Global Optimization, 1-31.
39.Glock, C. H., Grosse, E. H., Elbert, R. M., & Franzke, T. (2017). Maverick picking: the impact of modifications in work schedules on manual order picking processes. International Journal of Production Research, 55(21), 6344-6360.
40.Gong, Y., & De Koster, R.(2008). A polling-based dynamic order picking system for online retailers. IIE transactions, 40(11), 1070-1082.
41.Gu, J., Goetschalckx, M., & McGinnis, L. F.(2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
42.Gue, K. R., & Meller, R. D.(2009). Aisle configurations for unit-load warehouses. IIE transactions, 41(3), 171-182.
43.Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O., & Vlasta, D. A.(2001). Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16(1), 79-100.
44.Hariharan, S., Bukkapatnam, S.T.. "Misplaced item search in a warehouse using an RFID-based Partially Observable Markov Decision Process (POMDP) model," 77 Proceedings of the IEEE International Conference on Automation Science and Engineering, 2009, pp. 443-448.
45.Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal Storage Assignment in Automatic Warehousing Systems. Management Science, 22(6), 629–638.
46.Henn, S.(2012). Algorithms for on-line order batching in an order picking warehouse. Computers & Operations Research, 39(11), 2549-2563.
47.Henn, S., & Wäscher, G.(2012). Tabu search heuristics for the order batching problem in manual order picking systems. European Journal of Operational Research, 222(3), 484-494.
48.Henn, S., Koch, S., & Wäscher, G.(2012). Order batching in order picking warehouses: a survey of solution approaches. In Warehousing in the global supply chain (pp. 105-137). Springer, London.
49.Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G.(2010). Metaheuristics for the order batching problem in manual order picking systems. Business Research, 3(1), 82-105.
50.Ho, S. S., & Sarma, S. (2008, December). The fragmented warehouse: Location assignment for unit-load picking. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1159-1163). IEEE.
51.Ho, Y. C., & Chien, S. H. (2006). A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs. International journal of production research, 44(20), 4193-4222.
52.Ho, Y. C., & Chien, S. P.(2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering, 50(4), 426-439.
53.Ho, Y. C., & Lin, J. W.(2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
54.Ho, Y. C., & Tseng, Y. Y.(2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391-3417.
55.Ho, Y. C., Su, T. S., & Shi, Z. B.(2008). Order-batching methods for an order-picking warehouse with two cross aisles. Computers & Industrial Engineering, 55(2), 321-347.
56.Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research, 257(1), 185-196.
57.Hong, S., Johnson, A. L., & Peters, B. A.(2012). Large-scale order batching in parallel-aisle picking systems. IIE Transactions, 44(2), 88-106.
58.Hsieh, L. F., & Huang, Y. C.(2011). New batch construction heuristics to optimise the performance of order picking systems. International Journal of Production Economics, 131(2), 618-630.
59.Hsieh, L. F., & Tsai, L.(2006). The optimum design of a warehouse system on order picking efficiency. The International Journal of Advanced Manufacturing Technology, 28(5-6), 626-637.
60.Hsu, C. M., Chen, K. Y., & Chen, M. C.(2005). Batching orders in warehouses by minimizing travel distance with genetic algorithms. Computers in industry, 56(2), 169-178.
61.Huang, Shiyang; Hu, Guiping (2019). Automated guided vehicle dispatching based on combinatorial optimisation to minimise job waiting time on shop floors. International Journal of Planning and Scheduling, 3(1), 28–.
62.Hwang, H., & Kim, D. G.(2005). Order-batching heuristics based on cluster analysis in a low-level picker-to-part warehousing system. International Journal of Production Research, 43(17), 3657-3670.
63.Hwang, H., Oh, Y. H., & Lee, Y. K.(2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
64.Jaržemskis, A. (2007). Research on Public Logistics Centre as Tool for Cooperation. Transport, 22, 50-54.
65.Jeong, B. H., & Randhawa, S. U. (2001). A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
66.Kayikci, Y. (2010). A conceptual model for intermodal freight logistics centre location decisions. Procedia – Social and Behavioral Sciences,2(3). https://doi.org/10.1016/j.sbspro.2010.04.039
67.Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29(1), 323-355
68.Koch, S., & Wäscher, G.(2016). A grouping genetic algorithm for the order batching problem in distribution warehouses. Journal of Business Economics, 86(1-2), 131-153.
69.Koo, P. H.(2009). The use of bucket brigades in zone order picking systems. OR spectrum, 31(4), 759.
70.Kovac, M., & Djurdjevic, D. (2020). Optimization of order-picking systems through tactical and operational decision making. International Journal of Simulation Modelling, 19(1), 89-99.
71.Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible services and manufacturing journal, 24(1), 52-80.
72.Kulak, O., Sahin, Y., & Taner, M. E.(2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible services and manufacturing journal, 24(1), 52-80.
73.Le-Anh*, T., & De Koster, M. B. M. (2005). On-line dispatching rules for vehicle-based internal transport systems. International Journal of Production Research, 43(8), 1711-1728.
74.Le-Duc, T., & De Koster, R. M.(2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
75.Li, Y., & Li, Y.(2018, June). E-commerce order batching algorithm based on association rule mining in the era of big data. In 2018 Chinese Control And Decision Conference (CCDC)(pp. 1934-1939). IEEE.
76.Lin, C. H., & Lu, I. Y.(1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60, 301-307. vol.60, no. 1, 301-307.
77.Liu, C. M. (1999). Clustering techniques for stock location and order-picking in a distribution center. Computers & Operations Research, 26(10-11), 989-1002.
78.Liu, C. M. (2004). Optimal storage layout and order picking for warehousing. International Journal of Operations Research, 1(1), 37-46.
79.Liu, G., Yu, W., & Liu, Y. "Resource management with RFID technology in automatic warehouse system," IEEE/RSJ International Conference of Intelligent Robots and Systems, 2006, pp.3706-3711.
80.Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q.(2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
81.Lummus, R. R., Krumwiede, D. W., & Vokurka, R. J. (2001). The relationship of logistics to supply chain management: developing a common industry definition. Industrial management & data systems.
82.Marchet, G., Melacini, M., & Perotti, S.(2015). Investigating order picking system adoption: a case-study-based approach. International Journal of Logistics Research and Applications, 18(1), 82-98.
83.Masae, M., Glock, C. H., & Grosse, E. H.(2020). Order picker routing in warehouses: A systematic literature review. International Journal of Production Economics, 224, 107564.
84.Masae, M., Glock, C. H., & Vichitkunakorn, P. (2021). A method for efficiently routing order pickers in the leaf warehouse. International Journal of Production Economics, 234, 108069.
85.Masae, M., Glock, C. H., & Vichitkunakorn, P.(2020). Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. International Journal of Production Research, 1-22.
86.Matusiak, M., De Koster, R., & Saarinen, J.(2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263(3), 888-899.
87.Menéndez, B., Pardo, E. G., Alonso-Ayuso, A., Molina, E., & Duarte, A.(2017). Variable neighborhood search strategies for the order batching problem. Computers & Operations Research, 78, 500-512.
88.Moeller, K.(2011). Increasing warehouse order picking performance by sequence optimization. Procedia-Social and Behavioral Sciences, 20, 177-185.
89.Molnar, B. A. L. Á. Z. S., & Lipovszki, G. Y. Ö. R. G. Y.(2005). Multi-objective routing and scheduling of order pickers in a warehouse. International Journal of Simulation, 6(5), 22-32.
90.Mowrey, C. H., & Parikh, P. J.(2014). Mixed-width aisle configurations for order picking in distribution centers. European Journal of Operational Research, 232(1), 87-97.
91.Mutingi, M., & Mbohwa, C.(2017). Optimizing order batching in order picking systems: Hybrid grouping genetic algorithm. In Grouping Genetic Algorithms (pp. 121-140). Springer, Cham.
92.Öztürkoğlu, Ö., & Hoser, D.(2019). A discrete cross aisle design model for order-picking warehouses. European Journal of Operational Research, 275(2), 411-430.
93.Öztürkoğlu, Ö., Gue, K. R., & Meller, R. D.(2012). Optimal unit-load warehouse designs for single-command operations. IIE Transactions, 44(6), 459-475.
94.Pan, J. C. H., Shih, P. H., & Wu, M. H.(2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57, 238-248.
95.Parikh, P. J., & Meller, R. D.(2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research Part E: Logistics and Transportation Review, 44(5), 696-719.
96.Pei, Z., Wang, Z., & Yang, Y.(2019, April). Research of Order Batching Variable Neighborhood Search Algorithm based on Saving Mileage. In 3rd International Conference on Mechatronics Engineering and Information Technology(ICMEIT 2019). Atlantis Press.
97.Pergher, Isaac; de Almeida, Adiel Teixeira (2018). A multi-attribute, rank-dependent utility model for selecting dispatching rules. Journal of Manufacturing Systems, 46(), 264–271.
98.Petersen, C. G.(1997).An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
99.Petersen, C. G., & Aase, G. R.(2017). Improving order picking efficiency with the use of cross aisles and storage policies. Open Journal of Business and Management, 5(01), 95.
100.Petersen, C.G.(2000). An evaluation of order picking policies for mail order companies. Production and operations management, 9(4), 319-335.
101.Pferschy, U., & Schauer, J.(2018). Order batching and routing in a non-standard warehouse. Electronic Notes in Discrete Mathematics, 69, 125-132.
102.Pohl, L. M., Meller, R. D. and Gue, K. R., “An analysis of dual-command operations in common warehouse designs,” Transportation Research Part E, Vol.45, pp. 367-379, 2009a.
103.Pohl, L. M., Meller, R. D. and Gue, K. R., “Optimizing fishbone aisle for dual-command operations in a warehouse,” Naval Research Logistics, Vol. 56, pp. 389-403, 2009b.
104.Pourvaziri, H., Pierreval, H., & Marian, H.(2020). Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. European Journal of Operational Research.
105.Quader, S., & Castillo-Villar, K. K.(2018). Design of an enhanced multi-aisle order-picking system considering storage assignments and routing heuristics. Robotics and Computer-Integrated Manufacturing, 50, 13-29.
106.Ran, W., Liu, S., & Zhang, Z.(2020). A polling-based dynamic order-picking system considering priority orders. Complexity, 2020.
107.Rardin, R. L.(1998). Optimization in operations research. Upper Saddle River, NJ: Prentice-Hall.
108. Roodbergen, K. J., & De Koster, R.(2001). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.
109.Roodbergen, K. J., & De Koster, R.(2001). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43.
110.Roodbergen, K. J., & Vis, I. F.(2006). A model for warehouse layout. IIE transactions, 38(10), 799-811.
111.Roodbergen, K. J., Sharp, G. P., & Vis, I. F.(2008). Designing the layout structure of manual order picking areas in warehouses. IIE Transactions, 40(11), 1032-1045.
112.Rosenblatt, M. J. and Roll, Y., “Warehouse capacity in a stochastic environment,”International Journal of Production Research, Vol. 26, pp. 1847-1851, 1988.
113.Rosenblatt, M. J., & Eynan, A. (1989). Note—Deriving the optimal boundaries for class-based automatic storage/retrieval systems. Management Science, 35(12), 1519-1524.
114.Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H.(2000). Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), 515-533.
115.Sabuncuoglu, I., & Hommertzheim, D. L. (1992). Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system. The International Journal Of Production Research, 30(5), 1059-1079.
116.Şahin, R., Ertoğral, K., & Türkbey, O.(2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers & Industrial Engineering, 59(2), 308-313.
117.Scholz, A., & Wäscher, G.(2017). Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing. Central European Journal of Operations Research, 25(2), 491-520.
118.Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
119.Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G.(2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
120.Schrotenboer, A. H., Wruck, S., Roodbergen, K. J., Veenstra, M., & Dijkstra, A. S.(2017). Order picker routing with product returns and interaction delays. International Journal of Production Research, 55(21), 6394-6406.
121.Septiani, W., Divia, G. A., & Adisuwiryo, S. (2020, April). Warehouse layout designing of cable manufacturing company using dedicated storage and simulation promodel. In IOP Conference Series: Materials Science and Engineering (Vol. 847, No. 1, p. 012054). IOP Publishing.
122.Sharma, S., & Shah, B. (2015). A proposed hybrid storage assignment framework: a case study. International Journal of Productivity and Performance Management.
123.Srivilas, K., & Cherntanomwong, P.(2017, March). Routing algorithm in warehouse with congestion consideration using an ACO with VLC support. In 2017 International Electrical Engineering Congress(iEECON)(pp. 1-4). IEEE.
124.Theys, C., Bräysy, O., Dullaert, W., & Raa, B.(2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
125.Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A.(2010). Facilities planning. John Wiley & Sons.
126.Tsai, C. Y., Liou, J. J., & Huang, T. M.(2008). Using a multiple-GA method to solve the batch picking problem: considering travel distance and order due time. International Journal of Production Research, 46(22), 6533-6555.
127.Uckelmann, D. (2008, September). A definition approach to smart logistics. In International Conference on Next Generation Wired/Wireless Networking (pp. 273-284). Springer, Berlin, Heidelberg.
128.Urzúa, M., Mendoza, A., & González, A. O.(2019). Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logist. Int. Sci. J. Logist, 6, 103-114.
129.Valle, C. A., Beasley, J. E., & da Cunha, A. S.(2017). Optimally solving the joint order batching and picker routing problem. European Journal of Operational Research, 262(3), 817-834.
130.Van Den Berg, J. P., & Van Der Hoff, H. H.(2001). An order batching algorithm for wave picking in a parallel-aisle warehouse. IIE transactions, 33(5), 385-398.
131.Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261.
132.Vaughan, T. S.(1999). The effect of warehouse cross aisles on order picking efficiency. International Journal of Production Research 37.4: 881-897.
133.Wang, H., Chen, S., & Xie, Y. (2010). An RFID-based digital warehouse management system in the tobacco industry: a case study. International Journal of Production Research, 48(9), 2513-2548.
134.Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. The International Journal of Production Research, 31(1), 43-57.
135.Yohanes, A. (2018). PERANCANGAN TATA LETAK GUDANG BAHAN BAKU DENGAN METODE SHARED STORAGE PADA PT. PANTJATUNGGAL KNITTING MILL. Jurnal Ilmiah Dinamika Teknik.
136.Yu, M., & De Koster, R. B.(2009). The impact of order batching and picking area zoning on order picking system performance. European Journal of Operational Research, 198(2), 480-490.
137.Zelak Leite Bastos, F., Tadeu Scarpin, C., & Pécora Junior, J. E. (2019). Picking planning and quality control analysis using discrete simulation: case in a food industry. Dyna, 86(208), 271-280.
138.Zhang, J., Wang, X., & Huang, K.(2016). Integrated on-line scheduling of order batching and delivery under B2C e-commerce. Computers & Industrial Engineering, 94, 280-289.
139.Zhang, J., Wang, X., Chan, F. T., & Ruan, J.(2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 271-284.
140.Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M.(2018). Picker routing and storage-assignment strategies for precedence-constrained order picking. Computers & Industrial Engineering, 123, 338-347.
141.Žulj, I., Kramer, S., & Schneider, M.(2018). A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem. European Journal of Operational Research, 264(2), 653-664.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2022-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明