以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:22 、訪客IP:18.224.62.143
姓名 陳姿吟(Tzu-Yin Chen) 查詢紙本館藏 畢業系所 化學學系 論文名稱 高溫高壓水熱法合成錳矽酸鹽 及其結構與性質研究
(High-temperature, High-pressure Hydrothermal Synthesis, Structures and Properties of Manganese Silicates)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文利用高溫高壓水熱法合成出三個具新穎結構的錳矽酸鹽,分別為K2MnSi4O10 (1)、K3Mn3Si8O22 (2)及K2MnSi3O8 (3),三個化合物經由單晶X光繞射分析鑑定出其晶體結構,並利用粉末X光繞射分析比對理論圖譜,以確定產物的純度,並用EDS確定化合物的元素組成,更進一步將化合物1和2測量XPS以確定錳金屬離子的價數,並測量化合物2的磁性性質。化合物1的空間群為中心對稱的P1 ̅,其結構包含一維管狀的矽酸鏈,其是藉由SiO4四面體以共角方式形成六員環,其中兩個SiO4四面體再以共角方式使六員環彼此連接結形成管狀矽酸鏈,再透過由雙三角錐的Mn2+O5以共邊方式所形成的二聚體單元和管狀鏈以共角的方式彼此連結形成三維結構;化合物2的空間群為C2/m,其結構為K+離子落在錳矽酸鹽所形成的二維層狀結構之間,層狀結構當中是以SiO4四面體以63網狀拓蹼的方式形成兩個單層矽酸鹽,而Mn3+O6六面體以共邊的方式形成鋸齒狀的鏈狀結構並介於兩個單層矽酸鹽之間;化合物3的空間群為P21/n,其結構為先藉由三個SiO4四面體以共角的方式形成最小重複單元,沿著c軸方向形成無限延伸鏈,鏈與鏈之間再以共角的方式在ac平面上形成單層矽酸鹽,而Mn2+O4四面體和單層矽酸鹽以共角的方式彼此連結形成三維結構。本研究顯示高溫高壓水熱法在合成新穎結構化合物尤其是金屬矽酸鹽是很好的方法。 摘要(英) Three new compounds, K2MnSi4O10 (1) and K3Mn3Si8O22 (2) and K2MnSi3O8(3), were synthesized by high-temperature, high-pressure hydrothermal method. Their crystal structures have been determined by the single crystal X-ray diffraction. The purity of the samples for further studies were checked by powder X-ray diffraction. The elemental compositions of these compounds were determined by EDS. The valence states of the manganese metal cations were confirmed by XPS. Magnetic susceptibilities of compound 2 were also measured to confirm the valence state of the Mn cation using a SQUID magnetometer. The space group of compound 1 is the centrosymmetric P1 ̅. Compound 1 contains 1D tubular silicate chains which are formed by condensation of six-membered rings. These tubular chains are linked via corner-sharing by dimers of edge-sharing Mn2+O5 trigonal bipyramids to form a 3D framework. The space group of compound 2 is the centrosymmetric C2/m. Compound 2 adopts a 2D layer structure with the K+ between and within the manganese silicate layers. Each layer consists of two unbranched zweier single layer silicates with a 63 network topology. Zig-zag chains of edge-sharing Mn3+O6 octahedra are sandwiched between two silicate layers. The space group of compound 3 is the centrosymmetric P21/n. Compound 3 consists of silicate layers in the ac plane which are connected by sharing corners between SiO4 tetrahedral units and these layers are connected by Mn2+O4 tetrahedral via sharing oxygen atoms to form 3D framework. The high-temperature, high-pressure hydrothermal method is a versatile method to synthesize new materials, especially metal silicate, with interesting properties. 關鍵字(中) ★ 無機化學
★ 結構化學
★ 錳矽酸鹽
★ 高溫高壓水熱法
★ 結構鑑定關鍵字(英) 論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 xi
附錄之表目錄 xii
第一章 緒論 1
1-1 錳矽酸鹽簡介 1
1-1-1 金屬矽酸鹽 1
1-1-2 錳矽酸鹽的種類 5
1-1-3 錳矽酸鹽的結構 9
1-2 研究動機 14
1-3 研究成果摘要 15
第二章 實驗與結構解析 16
2-1 合成方法 16
2-1-1 水熱合成法(Hydrothermal synthesis) 16
2-1-2 使用設備清單 20
2-1-3 使用藥品清單 20
2-2 鑑定方法 21
2-2-1 使用儀器列表 21
2-2-2 單晶X光繞射儀與結構分析 23
2-2-3 粉末X光繞射儀 (PXRD) 29
2-2-4 X光能量散佈分析儀 (EDS) 30
2-2-5 X光光電子能譜儀 (XPS) 31
2-2-6 磁性 (Magnetic property)及超導量子干涉儀(Superconducting Quantum Interference Device, SQUID) 32
2-3 實驗合成方法 37
2-3-1 K2MnSi4O10 (1)合成條件 37
2-3-2 K3Mn3Si8O22 (2)合成條件 39
2-3-3 K2MnSi3O8 (3)合成條件 41
第三章 結果與討論 42
3-1 單晶X光繞射結構解析 42
3-1-1 單晶X光繞射分析 42
3-1-2 K2MnSi4O10 (1)結構解析 44
3-1-3 K3Mn3Si8O22 (2)結構解析 46
3-1-4 K2MnSi3O8 (3)結構解析 51
3-2 結構描述與討論 53
3-2-1 K2MnSi4O10 (1)結構描述 54
3-2-2 K3Mn3Si8O22 (2)結構描述 59
3-2-3 K2MnSi3O8 (3)結構描述 63
3-3 化合物鑑定與性質測定 67
3-3-1 K2MnSi4O10 (1)粉末X光繞射分析 67
3-3-2 K2MnSi4O10 (1)X光能量散佈光譜分析 68
3-3-3 K2MnSi4O10 (1)X光光電子能譜分析 69
3-3-4 K3Mn3Si8O22 (2)粉末X光繞射分析 72
3-3-5 K3Mn3Si8O22 (2) X光能量散佈光譜分析 73
3-3-6 K3Mn3Si8O22 (2) X光光電子能譜分析 74
3-3-7 K3Mn3Si8O22 (2)超導量子干涉儀測量及磁性分析 78
3-3-8 K2MnSi3O8 (3)粉末X光繞射分析 83
第四章 結論 84
參考文獻 86
附錄 90參考文獻 1.McBain, J. W., The Journal of Physical Chemistry 1933, 37, 149-150.
2.Davis, M. E., Nature 2002, 417, 813-821.
3.Dai, P.-S. E., Catal. Today 1995, 26, 3-11.
4.Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M., J. Am. Chem. Soc. 1982, 104, 1146-1147.
5.Nair, S.; Jeong, H.-K.; Chandrasekaran, A.; Braunbarth, C. M.; Tsapatsis, M.; Kuznicki, S. M., Chem. Mater. 2001, 13, 4247-4254.
6.Chao, T.-L.; Chang, W.-J.; Wen, S.-H.; Lin, Y.-Q.; Chang, B.-C.; Lii, K.-H., J. Am. Chem. Soc. 2016, 138, 9061-9064.
7.Endo, T.; Doi, Y.; Wakeshima, M.; Hinatsu, Y., Inorg. Chem. 2010, 49, 10809-10814.
8.Brandao, P.; dos Santos, A.; Paixão, L.; Reis, M., J. Solid State Chem. 2014, 211, 130-135.
9.Krüger, H.; Tropper, P.; Haefeker, U.; Kaindl, R.; Tribus, M.; Kahlenberg, V.; Wikete, C.; Fuchs, M. R.; Olieric, V., Mineralogical Magazine 2014, 78, 1613-1627.
10.Smart, M. M.; McMillen, C. D.; Ivey, K.; Kolis, J. W., Inorg. Chem. 2020, 59, 16804-16808.
11.Kaiser, J.; Jeitschko, W., Z. Kristallogr. - New Cryst. Struct. 2000, 215, 313-314.
12.He, Z.; Wangbo, M. H.; Ueda, Y.; Narumi, Y.; Kindo, K.; Taniyama, T.; Itoh, M.; Cheng, W., Chem. Asian J. 2009, 4, 1530-1535.
13.Fendrich, K. V.; Downs, R. T.; Origlieri, M. J., Acta Crystallogr. Sect. E: Cryst. Commun. 2016, 72, 959-963.
14.Dorsam, G.; Liebscher, A.; Wunder, B.; Franz, G., Am. Mineral. 2008, 93, 573-583.
15.Rabenau, A., Angew. Chem. Int. Ed. 1985, 24, 1026-1040.
16.Kennedy, G. C., Am. J. Sci. 1950, 248, 540.
17.Friedrich, W.; Knipping, P.; Laue, M., Annalen der Physik 1913, 346, 971-988.
18.Bragg, W. H.; Bragg, W. L., Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88, 428-438.
19.Ladd, M. F. C.; Palmer, R. A.; Palmer, R. A., Structure determination by X-ray crystallography. Springer: 1977; Vol. 233.
20.Sheldrick, G., Program for Crystal Structures Refinement, University of Gottingen, Gottingen 1997.
21.Brown, I.; Altermatt, D., Acta Crystallogr. Sect. B: Struct. Sci. 1985, 41, 244-247.
22.Sheldrick, G. M. SAINT, Version 7.68A; Bruker/Siemens Area Detector Absorption Correction Program University of Göttingen, Germany, 2009.
23.Brandao, P.; Rocha, J.; Reis, M. S.; Dos Santos, A.; Jin, R., J. Solid State Chem. 2009, 182, 253-258.
24.Liebau, F., Structural chemistry of silicates: structure, bonding, and classification. Springer Science & Business Media: 2012.
25.Peacor, D. R.; Buerger, M., Am. Mineral. 1962, 47, 539-556.
26.Völlenkle, H.; Wittmann, A.; Nowotny, H., Z. Kristallogr. Cryst. Mater. 1968, 126, 37-45.
27.Robinson, P. D.; Fang, J., Am. Mineral. 1970, 55, 1541-1549.
28.Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W.; Gerson, A. R.; Smart, R. S. C., Appl. Surf. Sci. 2011, 257, 2717-2730.
29.Ilton, E. S.; Post, J. E.; Heaney, P. J.; Ling, F. T.; Kerisit, S. N., Appl. Surf. Sci. 2016, 366, 475-485.
30.Junta, J. L.; Hochella Jr, M. F., Geochim. Cosmochim. Acta 1994, 58, 4985-4999.
31.Selwood, P. W., Magnetochemistry. Read Books Ltd: 2013.
32.Li, R.; Greaves, C., Phys. Rev. B 2003, 68, 172403.
33.Sanjeewa, L. D.; Sefat, A. S.; Smart, M.; McGuire, M. A.; McMillen, C. D.; Kolis, J. W., J. Solid State Chem. 2020, 283, 121090.
34.Kim, S. W.; Deng, Z.; Fischer, Z.; Lapidus, S. H.; Stephens, P. W.; Li, M.-R.; Greenblatt, M., Inorg. Chem. 2016, 55, 10229-10237.
35.Tohyama, T.; Saito, T.; Mizumaki, M.; Agui, A.; Shimakawa, Y., Inorg. Chem. 2010, 49, 2492-2495.
36.Aranda, M. A.; Attfield, J. P.; Batchelor, E.; Shields, G. P.; Bruque, S.; Gabas, M., Inorg. Chem. 1998, 37, 1329-1335.指導教授 李光華 審核日期 2022-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare