博碩士論文 109523024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.143.239
姓名 林邑豪(Yi-Hao Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於SKIP區塊預測器的360度視訊之VVC畫面間位元率控制
(SKIP Block Predictor Based VVC Inter-frame Rate Control for 360-degree Videos)
相關論文
★ 應用於車內視訊之光線適應性視訊壓縮編碼器設計★ 以粒子濾波法為基礎之改良式頭部追蹤系統
★ 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法★ 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法
★ 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之多視角視訊編碼★ 基於改良式可信度傳遞於同質區域之立體視覺匹配演算法
★ 以階層式Boosting演算法為基礎之棒球軌跡辨識★ 多視角視訊編碼之快速參考畫面方向決策
★ 以線上統計為基礎應用於CGS可調式編碼器之快速模式決策★ 適用於唇形辨識之改良式主動形狀模型匹配演算法
★ 以運動補償模型為基礎之移動式平台物件追蹤★ 基於匹配代價之非對稱式立體匹配遮蔽偵測
★ 以動量為基礎之快速多視角視訊編碼模式決策★ 應用於地點影像辨識之快速局部L-SVMs群體分類器
★ 以高品質合成視角為導向之快速深度視訊編碼模式決策★ 以運動補償模型為基礎之移動式相機多物件追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 360度視訊以大量數據為代價提供觀看者身臨其境的體驗和豐富的資訊。對於 360 度視訊,立方體投影變體(例如:等角立方體貼圖(equi-angular cubemap,EAC))的多功能視訊編碼(Versatile Video Coding, VVC),可實現比等矩形投影(equirectangular projection)更高的編碼增益。而VVC的參考軟體(VTM)採用基於R-λ模型之位元率控制(rate control),其中存在著CTU層的SKIP區塊(SKIP block)與非SKIP區塊(non-SKIP block)混合著進行編碼,但R-λ模型卻不適用於SKIP區塊,導致R-λ模型的λ值無法準確計算,進而增加位元率誤差。因此,本論文提出以輕量化類神經網路(light-weight neural network)為基礎之SKIP 區塊預測器(SKIP block predictor)的畫面間編碼位元率控制演算法,若在位元率控制的位元分配階段後,當前CTU預測為SKIP CTU,則使用空間相鄰已編碼 CTU的λ值來計算當前CTU的λ值,使得位元率誤差降低。其中基於輕量化類神經網路之預測器的參數量非常少,其增加的運算負擔可被忽略。另外,本論文提出通過限制I畫面(intra frame)中的畫面層量化參數(quantization parameter),以減少後續編碼畫面中的位元飢餓(starvation)。實驗結果顯示,本論文所提方案相較於VVC的參考軟體VTM-10.0的位元率控制方案,與現有可應用EAC格式的360度視訊之CTU層位元率控制方案,平均可達更低的位元誤差,且不會造成影像觀看品質降低。
摘要(英) 360-degree videos provide immersive viewing experiences and rich information at the expense of huge amount of data. For 360-degree videos, Versatile Video Coding (VVC) of variants of cubemap projection (e.g., equiangular cubemap (EAC)) enables higher coding gains than equirectangular projection. The VVC reference software (VTM) adopts the R-λ model based rate control that is applied to both the CTU-level SKIP blocks and non-SKIP blocks. However, the R-λ model cannot work well for SKIP blocks so that the λ value of a SKIP block cannot be accurately estimated, thereby increasing the bitrate error. Therefore, this paper proposes a SKIP block predictor based rate control algorithm for VVC interframe coding, where the predictor is implemented using a light-weight neural network. After the bit allocation stage in the rate control algorithm, the λ value of the current CTU will be estimated using the λ value of a spatially adjacent coded CTU if the current CTU is predicted to be a SKIP CTU. Thus, the bit rate error is reduced. The light-weight neural network based predictor has a small number of parameters, and the increased computational load can be ignored. In addition, this paper proposes to reduce the bit starvation problem in later coded frames by constraining the frame-level quantization parameter in intra frames. Experimental results show that, compared with the original rate control scheme of the reference software of VVC (VTM-10.0) and the state-of-the art rate control scheme that can be applied to the EAC format 360-degree videos, the proposed scheme can achieve better bitrate accuracy without degrading the viewing quality of videos.
關鍵字(中) ★ 360度視訊
★ 多功能視訊編碼
★ 畫面間編碼
★ 位元率控制
★ SKIP區塊預測器
★ 輕量化類神經網路
關鍵字(英) ★ 360 degree video
★ Versatile Video Coding
★ Interframe coding
★ rate control
★ SKIP block predictor
★ light-weight neural network
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究方法 3
1.4 論文架構 3
第二章 360度視訊編碼相關處理 4
2.1 多功能視訊編碼(VVC)簡介 4
2.1.1 多功能視訊編碼(VVC)架構 4
2.1.2 編碼單元與編碼樹單元劃分(CU&CTU Partition) 5
2.1.3 編碼單元之跳過模式(SKIP Mode) 7
2.2 360度視訊ERP(Equi-rectangular Projection)格式與EAC(Equi-angular Cubemap)格式介紹與轉換 8
2.2.1 ERP(Equi-rectangular Projection)格式介紹 9
2.2.2 EAC(Equi-angular Cubemap)格式介紹 10
2.2.3 ERP格式轉換EAC格式 13
2.3 360度視訊品質量測方法 14
2.3.1 WS-PSNR (Weighted to Spherically Uniform PSNR) 14
2.3.2 CPP-PSNR(crasters parabolic projection PSNR) 15
2.4 總結 16
第三章 360度視訊編碼位元率控制技術現況 17
3.1 位元率控制基本原理 17
3.1.1 位元分配(Bit Allocation) 17
3.1.2 編碼參數決定(Determination of coding parameters) 18
3.2 基於R-λ模型之位元率控制演算法 18
3.2.1 R-λ模型 18
3.3 360度視訊編碼之位元率控制方案 20
3.4 基於SKIP模式的位元率控制方案 21
3.5 總結 23
第四章 本論文所提之360度視訊編碼畫面間位元率控制方案 24
4.1 訓練資料集與VTM之實驗測試條件 24
4.1.1 訓練資料(Training Data) 25
4.1.2 本論文採用之編碼預測架構 26
4.2 EAC(Equi-angular Cubemap)格式的CTU層之R-λ建模(Modelling)分析 28
4.3 本論文所提之CTU層位元率控制方案 30
4.3.1 本論文所提方案之整體流程 30
4.3.2 本論文所提方案之SKIP區塊預測器 32
4.3.3 本論文所提之限制I-frame QP方案 34
4.4 總結 35
第五章 實驗結果與分析 36
5.1 實驗環境與參數設定 36
5.2 本論文所提預測器之準確率分析 39
5.3 本論文所提方案之實驗結果與分析 42
5.3.1所提方案與現有方案的R-D曲線與位元錯誤率比較 42
5.3.2所提方案與現有方案的畫面表現比較 47
5.3.3所提方案與現有方案的BD性能比較 65
5.4 總結 66
第六章 結論與未來展望 67
參考文獻 68
符號表 71
參考文獻 [1] JVET 360lib,https://jvet.hhi.fraunhofer.de/svn/svn_360Lib.
[2] B. Li, H. Li, L. Li, and J. Zhang, “λ domain rate control algorithm for high efficiency video coding,” IEEE Trans. Image Processing, Vol. 23, No. 9, pp. 3841–3854, Sep. 2014.
[3] Y. Chen, S. Kwong, M. Zhou, S. Wang, G. Zhu, and Y. Wang, “Intra frame rate control for versatile video coding with quadratic rate-distortion modelling,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4422-4426, May. 2020.
[4] M. H. Hyun, B. Lee, and M. Kim, “A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding,” vol. 8, pp. 227255-227269, IEEE Access, Dec. 2020.
[5] Y. Li, Z. Liu, Z. Chen, and S. Liu, “Rate control for versatile video coding,” in Proc. IEEE International Conference on Image Processing, Oct. 2020.
[6] B. Li, L. Song, R. Xie, and W. Zhang, “Weight-based bit allocation scheme for VR videos in HEVC,” in Proc. IEEE Visual Communications and Image Processing, pp. 1-4, Dec. 2017.
[7] Y. Liu, M. Xu, C. Li, S. Li, and Z. Wang, “A novel rate control scheme for panoramic video coding,” in Proc. IEEE International Conference on Multimedia and Expo, pp. 691-696, July. 2017.
[8] L. Li, N. Yan, Z. Li, S. Liu, and H. Li, “λ-domain perceptual rate control for 360-degree video compression,” IEEE Journal of Selected Topics in Signal Processing, Vol. 14, No. 1, pp. 130-145, Jan. 2020.
[9] Y.-C. Nien and C.-W. Tang, “Region-level bit allocation for rate control of 360-degree videos using cubemap projection,” Journal of Visual Communication and Image Representation, Vol. 79, August. 2021.
[10] ISO/IEC JTC1/SC29/WG11, “Algorithm description for versatile video coding and test model 10,” Doc. JVET-S2002, Teleconference, June. 2020.
[11] W.J. Chien, L.Zhang, M. Winken, X. Li, R.L. Liao, H. Gao; C.W. Hsu, H. Liu and C.C. Chen, “Motion Vector Coding and Block Merging in the Versatile Video Coding Standard,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 31, No. 10, pp. 3848–3861, Oct. 2021.
[12] ISO/IEC JTC1/SC29/WG11, “Algorithm descriptions of projection format conversion and video quality metrics in 360Lib (Version 11),” Doc. JVET-S2004, Teleconference, June. 2020.
[13] Equirectangular projection, https://en.wikipedia.org/wiki/Equirectangular_projection.
[14] J.-L. Lin, Y.-H. Lee, C.-H. Shih, S.-Y. Lin, H.-C. Lin, S.-K. Chang, P. Wang, L. Liu, and C.-C. Ju, “Efficient projection and coding tools for 360° video,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 9, No. 1, pp. 84–97, 2019.
[15] ISO/IEC JTC1/SC29/WG11, “AHG8: A study on Equi-Angular Cubemap projection (EAC)” Doc. JVET-G0056, Torino, July. 2017.
[16] M. Wang, J. Zhang, L. Huang, and J. Xiong, “Machine learning-based rate distortion modeling for VVC/H.266 intra-frame,” in Proc. IEEE International Conference on Multimedia Expo, pp. 1-6, July. 2021.
[17] B. Li, J. Xu, D. Zhang, and H. Li, “QP refinement according to Lagrange multiplier for high efficiency video coding,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 477–480, May. 2013.
[18] ISO/IEC JTC 1/SC 29/WG 11, “JVET common test conditions and evaluation procedures for 360° video,” Doc. JEVT-L1012, Macau, Oct. 2018.
[19] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective study of viewer navigation behaviors when watching 360-degree videos on computers,” in Proc. IEEE International Conference on Multimedia Expo, July. 2018.
[20] M. Xu, C. Li, Z. Chen, Z. Wang, and Z. Guan, “Assessing visual quality of omnidirectional videos,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 29, No. 12, pp. 3516-3530, Dec. 2019.
[21] ISO/IEC JTC1/SC29/WG11, “High effficiency video coding (HEVC) test model 15 (HM15) encoder description,” Doc. JCTVC-Q1002, Valencia, Apr. 2014.
[22] ISO/IEC JTC1/SC29/WG11, “AHG 3 Recommended settings for HM,” Doc. JCTVC-X0038, Geneva, June. 2014.
[23] ISO/IEC JTC 1/SC 29/WG 11, “AHG8: InterDigital test sequences for virtual reality video coding,” Doc. JEVT-D0039, Chengdu, Oct. 2016.
[24] Github of [8], https://github.com/xiaoliqiu/360_Rate_Control.
[25] G. Bjontegaard, “Calculation of average PSNR differences between RD-Curves,” Doc. VCEG-M33, Austin, US, April. 2001.
指導教授 唐之瑋(Chih-Wei Tang) 審核日期 2022-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明