博碩士論文 104553008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.129.70.157
姓名 方建華(Chien-Hua Fang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 不同的CNN架構於HEVC畫面間解碼之後處理效能評估
(Performance evaluation of Post-Processing for HEVC Inter Prediction With Different CNN Architectures)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-15以後開放)
摘要(中) 近幾年來Covid-19病毒噬虐全球,已造成5億多人口染疫,更造成600多萬人死亡,且人數還在攀升中;台灣面臨這次疫情也造成好幾百萬人確診需要居家隔離,為了要降低染疫風險,學校改成線上教學,大部分的公司避免群聚也改成線上開會,受限於使用者所觀看的畫面解析度、系統處理能力、儲存容量及網路頻寬,傳送高畫質或超高畫質影像壓縮技術就變得非常重要,如何在有限的資源下避免造成畫面延遲或失真且同時可以將聲音完整傳達到對方是目前很熱門的研究議題。
新一代的HEVC(High Efficiency Video Coding)壓縮標準比起上一代H.264在相同畫面品質雖然可以達到兩倍的壓縮效率,但是編碼運算非常複雜且造成影像不可逆的失真,利用解碼端的後處理將失真補償回來是其中一種方法。本篇論文接續後處理的研究,利用像素與像素之間空間域的相關性提取影像特徵,包括高斯遮罩及殘差演算法,並參考消息理論中引入多個側面消息結構。在本篇論文中,我們提出以VDSR(Very Deep Super Resolution)及EDSR(Enhanced Deep Super-Solution)兩種CNN(Convolutional Neural Networks)模型為主架構,探討在不同的CNN架構下畫面間預測對於編碼後處理的效能評估,以不同演算法特徵進行CNN模型訓練,影片測試結果以VDSR為主架構的CNN,雙輸入及三輸入影像品質都有獲得明顯的改善,而以EDSR主架構的CNN測試結果,SVM分群的結果也明顯優於前者,BDBR減少0.381%~0.701% ,BD-PSNR提升0.037~0.171db。特別注意的是兩種架構在碼率伯仲之間時,其BD-PSNR卻可以提升近一倍。
摘要(英) The covid-19 virus has spread all over the world in recent years. It has infected 500 million people and killed more than 6 million people, and the number is still rising; Taiwan is facing the epidemic, which has also caused tens of thousands of people to be diagnosed and need to be isolated at home. In order to reduce the risk of infection, schools have changed to online teaching; most of all the companies have also changed to online meetings to avoid gatherings. Limited by the screen resolution, system processing capability, storage capacity, and network bandwidth viewed by the user, it becomes a very important issue in transmitting high-quality or ultra-high-quality image compression technology. Reduce latency or distortion of the image and complete transmission of the sound to the other party at the same time is a very hot research topic.
The new generation of HEVC (High Efficiency Video Coding) compression standard can achieve 50% the compression efficiency compared to the previous generation H.264 in the same image quality. But the encoding operations are very complicated and cause irreversible image distortion. Distortion compensation is one of the methods. This paper continues the post-processing research, using the spatial domain correlation between pixels to extract image features, including Gaussian Mask and Residual algorithms, and enrolls the information theory in Introduces multiple side information structures. In this paper, we propose two CNN (Convolutional Neural Networks) models, VDSR (Very Deep Super-Resolution) and EDSR (Enhanced Deep Super-Solution) as the main architecture, to discuss the effect of Inter Prediction on encoder post-process under different CNN architectures. In the evaluation of processing efficiency, the CNN model is trained with different algorithm features. The image test results of the CNN with VDSR as the main structure have significantly improved the image quality of dual-input and triple-input, Forthmore, the test results of the CNN with the EDSR main structure, The results of SVM (Super Vector Machine) classification are also significantly better than the former, BDBR is reduced by about 0.381%~0.701%, and BDPSNR is improved by about 0.037~0.171db. It is particularly noteworthy that when the two architectures are in the same bitrate, EDSR’s BD-PSNR can be nearly doubled.
關鍵字(中) ★ Covid-19
★ 空間域
★ 高斯遮罩
★ 殘差
★ 畫面間預測
★ 編碼後處理
關鍵字(英) ★ Covid-19
★ Spatial domain
★ Gaussian Mask
★ Residual
★ Inter Prediction
★ Encoder Post-process
論文目次 論文摘要………………………………………………………………………….…....I
Abstract…………………………………………………………………………….....II
致謝...…………………………………………………………………………………IV
章節目錄……………………………………………………………………………....V
圖目錄……………………………………………………………………………...VIII
表目錄……………………………………………………………………………......XI
第一章 緒論 1
1.1 研究動機與目的 1
1.1.1 論文架構 2
1.2 影像編碼演進 3
1.3 HEVC編解碼系統架構及流程介紹 4
1.3.1 HEVC編碼架構 5
1. 編碼單元(Coding Unit) 6
2. 預測單元(Prediction Unit) 8
3. 畫面間預測原理(Inter Prediction Principle) 9
4. 轉換單元(Transform Unit) 13
1.3.2 HEVC解碼架構 13
1.4 量化參數(Quantization Parameter) 14
1.5 HEVC編碼組態(Configuration) 16
第二章 監督式學習與參考文獻 19
2.1 監督式學習與非監督式學習 19
2.2 支持向量機(Support Vector Machine) 20
2.2.1 SVM相關參考文獻 22
1. Reduction of Computational Complexity for HEVC Inter Prediction with Support Vector Machine 22
2.3 人工智慧 28
2.3.1 機器學習 28
2.3.2 人工神經網路(Artificial Neural Networks) 29
2.3.3 神經網路的深度學習 30
1. ReLu (Rectified Linear Unit) 33
2. Sigmoid 33
3. Tanh 33
2.4 卷積神經網路(Convolutional Neural Networks, CNN) 34
2.4.1 卷積層(Convolutional Layer) 35
2.4.2 池化層(Pooling Layer) 36
2.4.3 全連接層(Fully Connected Layer) 37
2.4.4 CNN相關參考文獻 37
1. Enhancing HEVC Compressed Videos with A Partition-Masked Convolutional Neural Network 37
2. CNN-Based Post-Processing for HEVC Inter Prediction 40
3. Post-processing for HEVC Intra Prediction with Resnet algorithm 45
第三章 模型設計與實驗 49
3.1 系統架構 49
3.1.1 三種影像特徵分類流程 51
1. 編碼影像(Encode Frame) 52
2. 高斯遮罩(Gaussian Mask) 53
3. 殘差(Residual) 55
3.1.2 CNN架構 56
1. 以VDSR為主的CNN模型 57
2. 以EDSR為主的CNN模型 59
3.2 環境建置及資料來源 62
3.2.1 硬體及軟體 63
3.2.2 資料來源 63
3.3 模型訓練 64
3.4 影片測試 66
3.5 效能分析 69
3.5.1 以VDSR為主的模型效能 69
3.5.2 以EDSR為主的模型效能 70
第四章 結論與未來展望 75
參考文獻 77
參考文獻 [1] J. W. &. Sons, “E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen,” Aberdeen, U.K , 2003.
[2] 維基百科, “High efficiency video coding,” 6 2019. [線上]. Available: https://zh.wikipedia.org/wiki/高效率視頻編碼.
[3] “Coding of audio-visual objects - Part 2: Visual,” ISO/IEC 14496-2 (MPEG-4 Visual Version 1), Apr. 1999.
[4] C.C.Wang, “A Study of DSP implementation of high efficient H.265/HEVC decoder based on OpenHEVC,” Department of Electronic Engineering,I-Shou University, 2015.
[5] 朱秀昌,劉峰,胡棟, H.265/HEVC視頻編碼新標準及其擴展, 北京: 電子工業出版社, 2016.
[6] J.K.Lui, “Reduction of Computational Complexity HEVC Inter Prediction With Support Vector Machine,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, Jan 2019.
[7] Vivienne Sze,Madhukar Budagavi,Gary J.Sullivan, High Efficiency Video Coding(HEVC) Algorithms and Architectures, Springer International Publishing Switzerland , 2014.
[8] 陳允傑, TensorFlow與Keras,Python 深度學習應用實務, 台北: 旗標科技, 2019.
[9] D. Frossard, “Linear Regression with NumPy,Using gradient descent to perform linear regression,” 28 5 2016. [線上]. Available: https://www.cs.toronto.edu/~frossard/post/linear_regression/.
[10] Y.Y.Chen, “Nearly QP-Optimized Post Processing for HEVC Intra Prediction,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, 2021.
[11] Q. H. X. H. X. Z. C. Z. W. L. X. He, “Enhancing Hevc Compressed Videos With A Partition-Masked Convolutional Neural Network,” International Conference on Image Processing(ICIP), pp. 216-220, 2018.
[12] C.K.Hsieh, “CNN-based post-processing for HEVC inter prediction,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, 2020.
[13] B. Lim, S. Son, H. Kim, S. Nah and K. M. Lee, “Enhanced Deep Residual Networks for Single Image Super-Resolution,” IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1132-1140, 2017.
[14] C.H.Chan, “CNN-based post-processing for HEVC intra prediction,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, 2020.
[15] Y.C.Chang, “A Combined Support Vector Machine and Convolutional Neural Network Architecture for HEVC,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, 2020.
[16] K.He, X.Zhang, S.Ren, J.Sun, “Deep Residual Learning for Image Recognition,” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.
[17] P.H.Tsui, “Post-Processing for HEVC Intra Prediction with ResNet algorithm,” Department of Communication Engineering National Central University, Taiwan 32054, R.O.C, 2022.
[18] J.Kim, J.K. Lee, K.M. Lee, “Accurate Image Super-Resolution Using Very Deep Convolutional Networks,” IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1646-1654, 2016.






指導教授 林銀議(Yin-Yi Lin) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明