博碩士論文 109523016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.252.140
姓名 陳宇晟(Yu-Cheng Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於 O-RAN 之工業物聯網系統設計與實現
(The Design and Implementation of O-RAN- based Industrial Internet of Things System)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-7以後開放)
摘要(中) 隨著物聯網 (IoT) 之飛快發展,IoT 裝置數量於 2020 年已達 300 億,估計 2025 年 IoT 裝 置數量將超越 750 億,其中又以工業物聯網 (IIoT) 之感測設備佔大宗。此外工廠內感測設備 可根據其應用與傳輸品質要求選擇適當之傳輸協議作為媒介,例如行動網路、低功耗藍牙 (BLE)、無線智慧公用網路 (Wi-SUN)、Wi-Fi 等進行資料交換。然而,這些通訊協定相互獨 立,若同時存在於工廠環境中將造成感測設備管理與維護困難。因此勢必需要一套相容於所 有傳輸機制之管理系統,透過開放介面監控、管理與更新感測裝置。
然而,湊巧近年開放性無線存取網路 (Open Radio Access Network, O-RAN) 之盛行,除 了其本身提倡之開放性介面、結合 AI/ML 之架構以及其高部署彈性之優點外,O-RAN 亦提 供了服務管理與編排 (Service Management and Orchestration, SMO) 之網路功能供網管對網路 設施進行監控與管理,使多家供應商之設備得以於 O-RAN 系統架構下融合。基於上述之優 點,本論文將設計一套基於開放性無線存取網路之工業物聯網系統 (簡稱 O-IIoT),為工廠內 不同之異質網路感測器提供優化網路管理之選項,降低工廠業者維運與管理成本。
為驗證本研究提出之 O-IIoT 系統之可行性,本研究將設計一套同時符合 Wi-SUN、BLE 與 5G New Radio (NR) 無線網路協定運作之管理系統。並以 Wi-SUN 為例之實作成果驗證其 管理介面能夠隨時因應當下狀況調整任一感測裝置之輪詢間隔 (Polling Interval)、回報間隔 (Reporting Interval) 與異常情形做出反應。
摘要(英) With the rapid development of the Internet of Things (IoT), the number of IoT devices has reached 30 billion in 2020, and it is estimated that the number of IoT devices will exceed 75 billion in 2025. Among them, the sensor equipment of the Industrial Internet of Things (IIoT) accounts for the majority. In addition, the sensor equipment in the factory can choose an appropriate transmission protocol as a medium according to its application and transmission quality requirements, such as mobile network, Bluetooth Low Energy (BLE), Wireless Smart Utility Network (Wi-SUN), Wi-Fi, etc. However, these communication solutions are quite different which will have difficulty in management and maintenance of sensor equipment. Therefore, it is necessary to have a management system with open interface to support all kinds of transmission solutions used in IIoT network.
Fortunately, in recent years, open radio access network (O-RAN) has become prevalent. In addition to the advantage of open interface, AI/ML combined architecture and high deployment flexibility, O-RAN also provides Service Management and Orchestration (SMO) function for network administrator to monitor and manage network functions, so that the equipment from different vendors can be easily integrated. Based on such benefit brought from open interface, this thesis will propose an O-RAN-based industrial internet of things system (named as O-IIoT), which aims to provide the network framework for heterogeneous sensors deployed in factory, which may reduce the maintenance and operation cost.
In order to verify the feasibility of O-IIoT system, this study takes Wi-SUN as an experimental example to evaluate the ability of the proposed network framework via dynamically adjusting the parameters of Polling Interval and Reporting Interval stored in a sensor device also react to unexpected situations.
關鍵字(中) ★ 開放性無線接入網路
★ 工業物聯網
★ 低功耗藍牙
★ 無線智能公用網絡
★ 第五代行動通訊
關鍵字(英) ★ O-RAN
★ IIoT
★ BLE
★ Wi-SUN
★ NR
論文目次 中文摘要............................................................................................................................................... i ABSTRACT ........................................................................................................................................ ii CONTENTS....................................................................................................................................... iii
Chapter 1. Chapter 2.
2.1 2.2 2.3 2.4 2.5 2.6 2.7
Chapter 3. Chapter 4.
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11
Chapter 5. 5.1
5.2
INTRODUCTION .......................................................................................................1
BACKGROUND .........................................................................................................3 Open Radio Access Network ........................................................................................... 3 Service Management Orchestration.................................................................................4 O1 Interface...................................................................................................................... 5 FAPI Interface .................................................................................................................. 5 NETCONF and YANG .................................................................................................... 7 Bluetooth Low Energy.....................................................................................................8 Wireless Smart Utility Network.......................................................................................9
RELATED WORK.....................................................................................................11
O-RAN BASED IIOT DESIGN ................................................................................12 OSC O-DU High Architecture ....................................................................................... 12 O-RU-based Sensor Architecture...................................................................................13 UE-based Sensor Architecture ....................................................................................... 15 O-RU-based Sensor and UE-based Sensor Architecture Comparison ........................... 16 O-IIoT System Scenario and Contribution ....................................................................18 Sensor Activation Procedure .......................................................................................... 19 Synchronization between O-DU and O-RU...................................................................23 O1 Configuration Procedure .......................................................................................... 25 Sensor Exception Handling Procedure ..........................................................................26 O-IIoT Scheduler Strategy ............................................................................................. 27 O-RU U-Plane Uplink Procedure ..................................................................................30
IMPLEMENTATION OF O-IIOT SYSTEM.............................................................34 Platform Description......................................................................................................34 Operation Procedure ......................................................................................................34 Experiment Result..........................................................................................................35
CONCLUSION AND FUTURE WORK...................................................................39 REFERENCES ................................................................................................................................. 41
參考文獻 [1] Bluetooth SIG “Bluetooth Core Specification,” Dec 31, 2019
[2] IEEE “802.15.4-2020 – IEEE Standard for Low-Rate Wireless Network” July 23, 2020
[3] Eugene Fodor, “Zigbee vs. Bluetooth: Choosing the right Protocol for Your IoT Application,”
March 05, 2021. Retrieved from https://www.digi.com/blog/post/zigbee-vs-bluetooth-choosing-
the-right-protocol
[4] F. Qualcomm (2020).Ultra-Reliable Low Latency 5G for Industrial (February,2021) Automation
Retrieved from https://www.qualcomm.com/media/documents/files/read-the-white-paper-by-
heavy-reading.pdf
[5] Y. Seol, D.Hyeon, J.Min, M.Kim, J.Paek, “Timely Survey of Time-Sensitive Networking: Past
and Future Directions” 2021 IEEE Access, Oct 2021
[6] Evgeny Khorov; Ilya Levitsky; Ian F. Akyildiz, “Current Status and Directions of IEEE
802.11be, the Future Wi-Fi 7” 2020 IEEE Access, May 08 2020
[7] O-RAN Architecture Description, O-RAN TS WG1 O-RAN-Architecture-Description-v03.00
[8] AI/ML Workflow Description and requirements, O-RAN WG2 AIML-v01.02
[9] O-RAN Operations and Maintenance Interface Specification, O-RAN WG1 O1-Interface.0-
v04.00
[10] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configuration protocol
(NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6241, June 2011. [Online].
Available: http://www.rfc- editor.org/rfc/rfc6241.txt
[11] M. Polese, L. Bonati, S. D′Oro, S. Basagni, T. Melodia, "Understanding O-RAN: Architecture,
Interfaces, Algorithms, Security, and Research Challenges", arXiv:2202.01032 [cs.NI],
February 2022.
[12] 5G-FAPI PHY API Specification, SCF222 Document 222.10.03
[13] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configuration Protocol
41
(NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6020, October 2010. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6020
[14] Bluetooth Low Energy Channels – Microchip Developer home page.
[15] Kumaran Vijayasankar, and Roberto Sandre, “Frequency hopping for long-range IoT networks,”
Texas Instruments, July 2016
[16] Shadi Al-Sarawi; Mohammed Anbar; Kamal Alieyan; Mahmood Alzubaidi, “Internet of Things
(IoT) communication protocols: Review” 2017 ICIT, Oct 23 2017
[17] Taibur Rahman; Swarnendu Kumar Chakraborty, “Provisioning Technical Interoperability
within ZigBee and BLE in IoT Environment” 2018 IEMENTech, Sep 17 2018
[18] Viacheslav Kulik; Ruslan Kirichek, “The Heterogeneous Gateways in the Industrial Internet of
Things” 2018 ICUMT, Feb 04 2019
[19] Ying Duan; Wenfeng Li; Ye Zhong; Xiuwen Fu, “A Multi-network Control Framework Based
on Industrial Internet of Things” 2016 ICNSC, May 26 2016
[20] 3GPP, “NG-RAN; Architecture description,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 38.401, 09 2018, version 15.3.0. [Online]. Available:
http://www.3gpp.org/DynaReport/38401.htm
[21] 3GPP, “Study on new radio access technology: Radio access architecture and interfaces,” 3rd
Generation Partnership Project (3GPP), Technical Report (TR) 38.801, 03 2017, version 14.0.0.
[22] 3GPP, “5G; NG-RAN; F1 Application Protocol (F1AP)” 3rd Generation Partnership Project
(3GPP), Technical Report (TR) 38.473, 01 2020, version 15.8.0
[23] 3GPP, “5G; NR; Medium Access Control (MAC) protocol specification” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 38.321, 09 2018, version 15.3.0.
[24] 3GPP, “General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U),” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 29.281, 06 2022, version
17.3.0
[25] O-RAN Software Community E-Release home page.
42

https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=41452927
[26] O-RAN O-DU High E-Release
home page. https://gerrit.o-ran-sc.org/r/admin/repos/o-du/l2
[27] Sensor and Collector- TI 15.4-Stack Project home page.
https://dev.ti.com/tirex/explore/node?devtools=LAUNCHXLCC1312R1&node=ACSAtZnxsY
4uCHgVnnjt2g__BSEc4rl__LATEST
[28] O-IIoT project gitlab home page.
https://mwnlgit.ce.ncu.edu.tw/cyc1206/OIIoT
[29] Li Ma; Zhaoyuan Xiu, “Industrial Internet of Things Multi-Protocol Convergence Gateway Research and Experiment” 2020 IEEE, Sep 09 2020
指導教授 許獻聰(Shiann-Tsong Sheu) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明