博碩士論文 109523081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.191.236.174
姓名 周昆頡(Kun-Chieh Chou)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於無跡卡爾曼的DOA追蹤法於UPA波束成型OFDM系統接收機
(UPA Beamforming OFDM Receiver Using the Unscented Kalman Filter for DOA Tracking)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 第五代通訊系統(5G)擁有巨大的潛力可實現低功耗、覆蓋範圍廣、低延遲、大頻寬和可靠傳輸。
但其容易受到過大的路徑損耗、延遲擴展與同通道干擾(Co-Channel Interference, CCI)等問題。
因此通過到達角度(Direction of Angle, DoA)估測與波束成型(beamforming)可以有效提高陣列天線接收之訊雜比,
並且得到較佳的通訊品質進而解決以上問題。其中又以MUSIC演算法為到達角估測的經典方法之一,
本文利用此方法為基礎,進行改良即延伸,並結合OFDM設計接收機。
本論文提出在正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)
系統接收端使用均勻平面陣列天線(Uniform Planar Array, UPA)為基礎,
在時域上藉由到達角度的估測來當作無跡卡爾曼濾波的DOA初始預測。
我們假設在目標物為移動訊號源的情況下所產生的角度變化量為基礎,
提出無跡卡爾曼濾波器適應性演算法在每次傳輸進行高效且精確的角度追蹤,
以提高OFDM系統中容量(capacity),並利用模擬結果進行性能分析與討論。
摘要(英) Nowadays, the ever-growing demand for mobile communications is constantly increasing the need for improved capacity,
better coverage, and higher-quality service. Three major disabilities limit the capacity and reliability of
wireless communication systems including multipath fading, delay spread, and co-channel interference.
With the high speed of communication in 5G, Direction-of-Arrival (DOA) estimation and fast beamforming techniques
need to be adopted. The MUltiple SIgnal Classification (MUSIC) algorithm has obvious advantage in high resolution
signal source estimation scenarios. The training time required to form and steer the main lobes toward 5G users must
be short.
In this thesis we evaluate an OFDM receiver with Uniform Planar Array (UPA). This work proposes tracking the
Direction of Arrival (DOA) through the Unscented Kalman Filter (UKF) algorithm based on a motion model
governing the moving source. DOA of the moving source is estimated using MUltiple SIgnal Classification (MUSIC)
and later the estimated DOA is used as an initial value and provided to the UKF algorithm to track the moving source.
Computer simulation is used to evaluate the performance of this work with MATLAB. Details drawing the process of
the proposed scheme are presented in this thesis.
關鍵字(中) ★ 波束成型
★ 無跡卡爾曼
★ 均勻平面陣列天線
★ 到達角估計
關鍵字(英) ★ Beamforming
★ Unscented Kalman Filter
★ Uniform Planar Array
★ Direction of Arrival
論文目次 目錄..................................................................i
圖目錄................................................................ii
表目錄................................................................iii
第1章序論.............................................................1
1.1 簡介......................................................1
1.2 章節架構..................................................4
第2章系統架構.........................................................5
2.1 OFDM介紹................................................5
2.2 OFDM技術關鍵............................................6
2.3 OFDM通訊系統和波束成型..................................7
2.4 通道估計................................................10
2.5 迫零等化器(Zero-Forcing Equalizer)......................11
第3章陣列天線與訊號處理...............................................12
3.1 天線增益(Antenna Gain)..................................12
3.2 相位陣列天線(Phased Array Antenna)......................13
3.3 天線方向圖(Antenna Pattern).............................13
3.4 均勻平面陣列天線(Uniform Planar Array)..................14
3.5 智慧型天線(Smart Antenna)...............................17
第4章角度估計與波束成型技術...........................................20
4.1 到達角估計(Direction of Arrival)........................20
4.2 多訊號分類(MUSIC)演算法.................................22
4.3 最小方差無失真響應(MVDR Beamforming)....................29
4.4 自適應濾波(Least-Mean-Square)演算法.....................32
第5章到達角之自適應追蹤...............................................35
5.1 Beam Sweeping Algorithm.................................35
5.2 到達角之適應性追蹤......................................39
5.3 無跡卡爾曼演算法(Unscented Kalman Filter)...............42
第6章系統模擬與結果分析...............................................46
6.1 DOA初估(MUSIC on Initial Training Sequence).............48
6.1.1 DOA初估(BSA based MUSIC)性能分析......................51
6.2 DOA追蹤(UKF on Preamble per Subframe)...................54
6.3 OFDM接收性能(DOA變化)...................................65
第7章結論.............................................................66
參考文獻..............................................................68
參考文獻 參 考 文 獻
[1] T.-D. Chiueh, P.-Y. Tsai, and I.-W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, 2nd ed. Wiley-IEEE Press, 2012.
[2] S. Haykin, Adaptive filter theory, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2002.
[3] S. Bellofiore, J. Foutz, C. Balanis, and A. Spanias, “Smart anten- nas for wireless communications,” in IEEE Antennas and Propa- gation Society International Symposium. 2001 Digest. Held in con- junction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), vol. 4, 2001, pp. 26–29 vol.4.
[4] W. Shieh, H. Bao, and Y. Tang, “Coherent optical ofdm: theory and design,” Opt. Express, vol. 16, no. 2, pp. 841–859, Jan 2008. [Online]. Available:


[5] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Processing Mag- azine, vol. 13, no. 4, pp. 67–94, 1996.
[6] E. Holzman, “Introduction to direction-of-arrival estimation (chen, z.; 2010) [reviews and abstracts],” IEEE Antennas and Propagation Magazine, vol. 53, no. 1, pp. 110–111, 2011.
[7] E. Brookner, “Tracking and kalman filtering made easy,” 1998.

[8] H. Yan and H. Fan, “A wideband kalman doa tracking algorithm,” in Fourth IEEE Workshop on Sensor Array and Multichannel Pro- cessing, 2006., 2006, pp. 45–49.
[9] E. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Sym- posium (Cat. No.00EX373), 2000, pp. 153–158.

[10] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estima- tion,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
[11] Q. Huang and N. Lu, “Optimized real-time music algorithm with cpu-gpu architecture,” IEEE Access, vol. 9, pp. 54 067–54 077, 2021.
[12] R. Schmidt, “Multiple emitter location and signal parameter esti- mation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[13] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
[14] F. Gao and A. Gershman, “A generalized esprit approach to direction-of-arrival estimation,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 254–257, 2005.
[15] Y. Jiang, M. K. Varanasi, and J. Li, “Performance analysis of zf and mmse equalizers for mimo systems: An in-depth study of the high snr regime,” IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2008–2026, 2011.
[16] H. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, ser. Detection, Estimation, and Modulation Theory. Wiley, 2002.
[17] F. Yan, M. Jin, and X. Qiao, “Low-complexity doa estimation based on compressed music and its performance analysis,” IEEE Transac- tions on Signal Processing, vol. 61, no. 8, pp. 1915–1930, 2013.
[18] P. Anjaneyulu, N. Pallavi, P. B. Reddy, V. Mahendra, and R. Karthik, “Implementation of digital beam former for phased array radar,” in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), vol. 2, 2017, pp. 242–244.
[19] P. Pal and P. P. Vaidyanathan, “Frequency invariant mvdr beam- forming without filters and implementation using mimo radar,” in

2009 IEEE International Conference on Acoustics, Speech and Sig- nal Processing, 2009, pp. 2081–2084.
[20] R. Chataut and R. Akl, “Massive mimo systems for 5g and beyond networks—overview, recent trends, challenges, and future research direction,” Sensors, vol. 20, no. 10, 2020. [Online]. Available:

[21] P. Saxena and A. Kothari, “Performance analysis of adaptive beamforming algorithms for smart antennas,” IERI Procedia, vol. 10, pp. 131–137, 2014, international Conference on Future Information Engineering (FIE 2014). [Online]. Available:


[22] F. A. Pereira de Figueiredo, “An overview of massive mimo for 5g and 6g,” IEEE Latin America Transactions, vol. 20, no. 6, pp. 931– 940, 2022.
[23] G. Renzhou, “Suppressing radio frequency interferences with adaptive beamformer based on weight iterative algorithm,” in 2007 IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN07), 2007, pp. 648–651.
[24] X.-D. Zhang, Matrix Analysis and Applications. Cambridge Uni- versity Press, 2017.
[25] Y. Z. Shujun Ye, Guanhao Liu and B. Dang, “The enhanced beam sweeping algorithm for doa estimation in the hybrid analog‑digital structure with nested array,” Scientific Reports, pp. 1–7, 2022.
[26] Y. Zhou, P. Yip, and H. Leung, “Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm,” IEEE Trans- actions on Signal Processing, vol. 47, no. 10, pp. 2655–2666, 1999.
[27] S. G. Larew and D. J. Love, “Adaptive beam tracking with the un- scented kalman filter for millimeter wave communication,” IEEE Signal Processing Letters, vol. 26, no. 11, pp. 1658–1662, 2019.

[28] F. W. Vook, A. Ghosh, E. Diarte, and M. Murphy, “5g new radio: Overview and performance,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 1247–1251.
指導教授 張大中(Dah-Chung Chang) 審核日期 2022-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明