博碩士論文 109523059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.138.174.195
姓名 王薏婷(Yi-Ting Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 無線感測網路環境下基於可靠信任模型的安全性拓樸控制之設計
(Reliable Trust-Based Topology Control against Internal Attacks in Wireless Sensor Networks)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-20以後開放)
摘要(中) 由於無線感測網路(WSNs)環境的開放性,造成容易受到惡意節點的內部攻擊,現有的大多數研究都計算感測器之間的成功率來代表節點的直接信任,使用信任評估模型是檢測未知節點和保證無線感測網路安全的有效方法。然而,如同開關攻擊這種內部惡意行為,在只計算兩個節點間的直接信任模型下,是不足以確保彼此節點是可信的。因此本文提出了一種新穎的信任模型,該模型考慮節點通訊和剩餘電量來計算感測器節點之間的直接信任,並收集鄰居節點的意見來計算間接信任。此外,我們也解釋了直接信任和間接信任之間的權重來做信任值的整合,最後,此模型包含一個基於滑動窗口方法的加權平均來定期更新最終信任值。另外,我們開發了一種基於可靠信任的拓樸控制演算法 (RTTC),以利用我們的信任模型並創建基於安全性的網路拓樸設計。基於模擬結果,我們提出的模型可以準確評估感測器節點的可信度,有效防止安全漏洞。
摘要(英) Wireless sensor networks (WSNs) are vulnerable to internal attacks because of the openness of network environments. Using a trust evaluation model is a helpful approach for detecting unidentified sensor nodes and ensuring security protection in WSNs. However, most existing studies consider the communications between nodes to calculate the direct trust, which may not be enough to compute the trust value due to various internal attacks like on-off attacks and malicious behavior. This thesis proposes a novel trust model that considers communication and residual energy to calculate direct trust between sensor nodes and uses neighbors′ direct trusts to evaluate indirect trusts. Then, the weight between direct and recommendation trusts is explained. Finally, the integrated trust′s value is updated periodically so that this model includes a weighted average operator based on the sliding window method. Furthermore, we developed a reliable trust-based topology control algorithm (RTTC) to utilize our trust model and create a security-based network topology. Based on simulation results, our proposed model can accurately assess sensor nodes′ trustworthiness and effectively prevent security breaches.
關鍵字(中) ★ 信任模型
★ 信任評估
★ 安全性
★ 無線感測網路
★ 網路拓樸
關鍵字(英) ★ Trust model
★ trust evaluation
★ security
★ wireless sensor networks
★ network topology
論文目次 Contents
摘要i
Abstract ii
List of Figures v
List of Tables vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work 5
2.1 Trust Models in Wireless Sensor Networks . . . . . . . . . . . . . . . . . . 5
2.1.1 Internal Attacks Analysis . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Trust Model Categories . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Trust Model Methodologies . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Topology Control in Wireless Sensor Networks . . . . . . . . . . . . . . . . 10
2.2.1 Topology Control Categories . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Security Topology Control in WSNs . . . . . . . . . . . . . . . . . 11
3 System Model 13
3.1 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Definition of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Trust Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Direct Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Indirect Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Integrated Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Trust Value Update . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Trust Value of Each Node . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Topology Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Reliable Trust-based Topology Control (RTTC) . . . . . . . . . . . . . . . 28
3.4.1 Network Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 The Value of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Topology based on Trust . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Experimental Results 36
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Random Scenario Setup . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 OpenStreetMap Scenario Setup . . . . . . . . . . . . . . . . . . . . 37
4.2 Simulations for Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Simulations for Network Topology . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Study of RTTC Algorithm Performance . . . . . . . . . . . . . . . 41
4.3.2 Study of RTTC Algorithm Under Attack . . . . . . . . . . . . . . . 54
5 Conclusion 57
Bibliography 58
參考文獻 [1] A. Tripathi, H. P. Gupta, T. Dutta, R. Mishra, K. K. Shukla, and S. Jit, “Coverage and connectivity in wsns: A survey, research issues and challenges,” IEEE Access, vol. 6, pp. 26 971–26 992, 2018.
[2] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can heterogeneous internet of things build our future: A survey,” IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 2011–2027, 2018.
[3] J.-Y. Yu, E. Lee, S.-R. Oh, Y.-D. Seo, and Y.-G. Kim, “A survey on security requirements for wsns: Focusing on the characteristics related to security,” IEEE Access, vol. 8, pp. 45 304–45 324, 2020.
[4] Y. Sun and Y. Zhao, “Dynamic adaptive trust management system in wireless sensor networks,” in 2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 2019, pp. 629–633.
[5] R. A. Shaikh, H. Jameel, B. J. d’Auriol, H. Lee, S. Lee, and Y. J. Song, “Group-based trust management scheme for clustered wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 11, pp. 1698-1712, 2009.
[6] I. Butun, P. Österberg, and H. Song, “Security of the internet of things: Vulnerabilities, attacks, and countermeasures,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 616–644, 2020.
[7] J. Jiang, G. Han, F. Wang, L. Shu, and M. Guizani, “An efficient distributed trust model for wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 5, pp. 1228–1237, 2015.
[8] V. Busi Reddy, S. Venkataraman, and A. Negi, “Communication and data trust for wireless sensor networks using D–S theory,” IEEE Sensors Journal, vol. 17, no. 12, pp. 3921–3929, 2017.
[9] X. Wu, J. Huang, J. Ling, and L. Shu, “Bltm: Beta and LQI based trust model for wireless sensor networks,” IEEE Access, vol. 7, pp. 43 679–43 690, 2019.
[10] T. Khan, K. Singh, L. Hoang Son, M. Abdel-Basset, H. Viet Long, S. P. Singh, and M. Manjul, “A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks,” IEEE Access, vol. 7, pp. 58 221–58 240, 2019.
[11] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd annual Hawaii international conference on system sciences. IEEE, 2000, pp. 10–pp.
[12] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H. Gandomi, “Residual energy-based cluster-head selection in wsns for iot application,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5132–5139, 2019.
[13] S. El Khediri, W. Fakhet, T. Moulahi, R. Khan, A. Thaljaoui, and A. Kachouri, “Improved node localization using k-means clustering for wireless sensor networks,” Computer Science Review, vol. 37, p. 100284, 2020.
[14] P. K. Singh and M. Paprzycki, “Introduction on wireless sensor networks issues and challenges in current era,” Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s, pp. 3–12, 2020.
[15] X. Liu, J. Yu, F. Li, W. Lv, Y. Wang, and X. Cheng, “Data aggregation in wireless sensor networks: From the perspective of security,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6495–6513, 2020.
[16] W. Fang, W. Zhang, W. Chen, T. Pan, Y. Ni, and Y. Yang, “Trust-based attack and defense in wireless sensor networks: a survey,” Wireless Communications and Mobile Computing, vol. 2020, 2020.
[17] L. Xiong and L. Liu, “A reputation-based trust model for peer-to-peer e-commerce communities,” EEE International Conference on E-Commerce, 2003. CEC 2003., pp. 275–284, 2003.
[18] S. Nefti, F. Meziane, and K. Kasiran, “A fuzzy trust model for e-commerce,” Seventh IEEE International Conference on E-Commerce Technology (CEC’05), pp. 401–404, 2005.
[19] A. Vance, C. Elie-Dit-Cosaque, and D. W. Straub, “Examining trust in information technology artifacts: The effects of system quality and culture,” Journal of Management Information Systems, vol. 24, no. 4, pp. 73–100, 2008.
[20] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-based framework for high integrity sensor networks,” ACM Trans. Sen. Netw., vol. 4, no. 3, jun 2008 [Online]. Available: https://doi.org/10.1145/1362542.1362546
[21] W. Fang, C. Zhang, Z. Shi, Q. Zhao, and L. Shan, “Btres: Beta-based trust and reputation evaluation system for wireless sensor networks,” Journal of Network and Computer Applications, vol. 59, pp. 88–94, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S108480451500140X
[22] A. Josang, R. Hayward, and S. Pope, “Trust network analysis with subjective logic,” in Conference Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSW 2006). Australian Computer Society, 2006, pp. 85–94.
[23] H. Kurdi, A. Alfaries, A. Al-Anazi, S. Alkharji, M. Addegaither, L. Altoaimy, and S. H. Ahmed, “A lightweight trust management algorithm based on subjective logic for interconnected cloud computing environments,” The Journal of Supercomputing, vol. 75, no. 7, pp. 3534–3554, 2019.
[24] E. Alemneh, S.-M. Senouci, P. Brunet, and T. Tegegne, “A two-way trust management system for fog computing,” Future Generation Computer Systems, vol. 106, pp. 206–220, 2020.
[25] F. Firoozi, V. I. Zadorozhny, and F. Y. Li, “Subjective logic based in-network data processing for trust management in collocated and distributed wireless sensor networks,” IEEE Sensors Journal, vol. 18, no. 15, pp. 6446–6460, 2018.
[26] D. Qin, S. Yang, S. Jia, Y. Zhang, J. Ma, and Q. Ding, “Research on trust sensing based secure routing mechanism for wireless sensor network,” IEEE Access, vol. 5, pp. 9599–9609, 2017.
[27] J. Zhao, J. Huang, and N. Xiong, “An effective exponential based trust and reputation evaluation system in wireless sensor networks,” IEEE Access, vol. 7, pp. 33 859–33 869, 2019.
[28] P. Singla and A. Munjal, “Topology control algorithms for wireless sensor networks: A review,” Wireless Personal Communications, vol. 113, no. 4, pp. 2363–2385, 2020.
[29] Y. Liu, L. Ni, and C. Hu, “A generalized probabilistic topology control for wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 9, pp. 1780–1788, 2012.
[30] M. Li, Z. Li, and A. V. Vasilakos, “A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues,” Proceedings of the IEEE, vol. 101, no. 12, pp. 2538–2557, 2013.
[31] Y. Wang, “Topology control for wireless sensor networks,” in Wireless sensor networks and applications. Springer, 2008, pp. 113–147.
[32] M. Khalily-Dermany, M. J. Nadjafi-Arani, and S. Doostali, “Combining topology control and network coding to optimize lifetime in wireless-sensor networks,” Computer Networks, vol. 162, p. 106859, 2019.
[33] M. Javadi, H. Mostafaei, M. U. Chowdhurry, and J. H. Abawajy, “Learning automaton based topology control protocol for extending wireless sensor networks lifetime,” Journal of Network and Computer Applications, vol. 122, pp. 128–136, 2018.
[34] Z. H. Mir and Y.-B. Ko, “Collaborative topology control for many-to-one communications in wireless sensor networks,” IEEE Access, vol. 5, pp. 15 927–15 941, 2017.
[35] H. Bagci, I. Korpeoglu, and A. Yazıcı, “A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 914–923, 2015.
[36] X. Li, J. Cai, and H. Zhang, “Topology control for guaranteed connectivity provisioning in heterogeneous sensor networks,” IEEE Sensors Journal, vol. 16, no. 12, pp. 5060–5071, 2016.
[37] L. Ding, W. Wu, J. Willson, H. Du, W. Lee, and D.-Z. Du, “Efficient algorithms for topology control problem with routing cost constraints in wireless networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 10, pp. 1601-1609, 2011.
[38] G.-J. Jong, Z.-H. Wang, Hendrick, K.-S. Hsieh, and G.-J. Horng, “A novel adaptive optimization of intragrated network topology and transmission path for iot system,” IEEE Sensors Journal, vol. 19, no. 15, pp. 6452–6459, 2019.
[39] A. Beheshtiasl and A. Ghaffari, “Secure and trust-aware routing scheme in wireless sensor networks,” Wireless Personal Communications, vol. 107, no. 4, pp. 1799–1814,
2019.
[40] Z. Liu, W. Liu, Q. Ma, G. Liu, L. Zhang, L. Fang, and V. S. Sheng, “Security cooperation model based on topology control and time synchronization for wireless sensor networks,” Journal of Communications and Networks, vol. 21, no. 5, pp. 469–480, 2019.
[41] W. Fang, W. Zhang, W. Yang, Z. Li, W. Gao, and Y. Yang, “Trust management-based and energy efficient hierarchical routing protocol in wireless sensor networks,” Digital Communications and Networks, vol. 7, no. 4, pp. 470–478, 2021.
[42] S. S. Desai and M. J. Nene, “Node-level trust evaluation in wireless sensor networks,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 8, pp. 2139–2152, 2019.
[43] A. K. Gautam and R. Kumar, “A comprehensive study on key management, authentication and trust management techniques in wireless sensor networks,” SN Applied Sciences, vol. 3, no. 1, pp. 1–27, 2021.
[44] T. Wang, H. Luo, X. Zeng, Z. Yu, A. Liu, and A. K. Sangaiah, “Mobility based trust evaluation for heterogeneous electric vehicles network in smart cities,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1797-1806, 2021.
[45] T. Wang, H. Luo, X. Zheng, and M. Xie, “Crowdsourcing mechanism for trust evaluation in cpcs based on intelligent mobile edge computing,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6, oct 2019. [Online]. Available: https://doi.org/10.1145/3324926
[46] A. Ahmed, K. Abu Bakar, M. Channa, K. Haseeb, and A. Khan, “A trust aware routing protocol for energy constrained wireless sensor network,” Telecommunication Systems, vol. 61, 06 2015.
[47] B. Sun and D. Li, “A comprehensive trust-aware routing protocol with multi-attributes for WSNs,” IEEE Access, vol. 6, pp. 4725–4741, 2018.
[48] M. Ahsanullah, B. Kibria, and M. Shakil, “Normal distribution,” in Normal and Student st Distributions and Their Applications. Springer, 2014, pp. 7–50.
[49] B. Deb, S. Bhatnagar, and B. Nath, “Stream: Sensor topology retrieval at multiple resolutions,” Telecommunication Systems, vol. 26, no. 2, pp. 285–320, 2004.
[50] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.
指導教授 胡誌麟 惠霖(Chih-Lin Hu Lin Hui) 審核日期 2022-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明