共 13 頁 第 1 頁

- 本測驗試題為多選題 (答案可能有一個或多個) ,請選出所有正確或最適當的答案,並請將答案用2B鉛筆填於答案卡。
- 共二十題,每題五分。每題ABCDE選項單獨計分;每一選項個別分數為一分,答錯倒扣一分,倒扣至本測驗試題零分為止。

Notation: In the following problems, \mathbb{R} is the usual set of all real numbers. We will use underlined letters such as $\underline{a} \in \mathbb{R}^n$ to denote a real, column vector \underline{a} of length n. $\|\underline{a}\|$ means the Frobenius norm of vector \underline{a} , and $\underline{0}$ is the all-zero column vector of proper length. We will use boldface letters such as $\mathbf{A} \in \mathbb{R}^{m \times n}$ to denote a real matrix \mathbf{A} of size $m \times n$, and we will write $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{m \times n}$, where $a_{i,j}$ is the (i,j)-th entry of \mathbf{A} with subindices $i = 1, \ldots, m$, and $j=1,\ldots,n$. \mathbf{A}^{\top} is the transpose of matrix \mathbf{A} . rank(\mathbf{A}) denotes the rank of matrix \mathbf{A} . \mathbf{I}_n is the $n \times n$ identity matrix. $\det(\mathbf{A})$ and $\operatorname{tr}(\mathbf{A})$ are respectively the determinant and trace of square matrix A. Unless otherwise stated, all vector spaces and linear combinations are over field \mathbb{R} and the orthogonality is with respect to the usual Euclidean inner product. By span $\{\underline{w}_1, \dots, \underline{w}_k\}$ we mean the vector space generated by vectors $\underline{w}_1, \ldots, \underline{w}_k$ over \mathbb{R} , and by $\dim(\mathcal{W})$ we mean the dimension of vector space W over its base field \mathbb{R} . u(t) is unit step (aka Heaviside step) function defined as u(t) = 1 if $t \ge 0$ and u(t) = 0 if t < 0; \star is the convolution operator. $\mathscr{L}: f(t) \mapsto F(s)$ and $\mathscr{L}^{-1}: F(s) \mapsto f(t)$ denote the <u>unilateral</u> Laplace and inverse Laplace transforms for $t \geq 0$, respectively. Primes of functions of one variable denote the derivatives with respect to the variable, for instance, $y'(x) = \frac{d}{dx}y(x)$, and by $y^{(n)}(x)$ we mean the *n*-th order derivative of y(x) with respect to variable x.

- 1. Let $\mathbf{A} = [\underline{a}_1, \dots, \underline{a}_n] \in \mathbb{R}^{m \times n}$. If rank $(\mathbf{A}) = m$, which of the following statements is/are true?
 - (A) span $\{\underline{a}_1, \dots, \underline{a}_n\} = \mathbb{R}^m$.
 - (B) The linear system $\underline{A}\underline{x} = \underline{b}$ with unknown \underline{x} is consistent for all $\underline{b} \in \mathbb{R}^m$.
 - (C) The reduced row-echelon form of A does not have any zero row.
 - (D) Each row of A has a pivot position.
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 13 頁 第 2 頁

2. Let $\mathbf{M}, \mathbf{N} \in \mathbb{R}^{n \times n}$ be invertible matrices. Which of the following statements is/are always true?

- (A) M^{-1} is invertible and $(M^{-1})^{-1} = M$.
- (B) $(MN)^{-1} = N^{-1}M^{-1}$.
- (C) MN = NM.
- (D) \mathbf{M}^{\top} is invertible and $(\mathbf{M}^{\top})^{-1} = (\mathbf{M}^{-1})^{\top}$.
- (E) None of the above is true.

3. Let $\mathbf{B} \in \mathbb{R}^{2 \times 2}$ and we know that

$$\mathbf{B}^2 = \frac{1}{8} \left[\begin{array}{cc} 17 & 15 \\ 15 & 17 \end{array} \right].$$

Which of the following statements can be true?

(A)

$$(\mathbf{B}^{-1})^3 = \frac{1}{16} \begin{bmatrix} 65 & -63 \\ -63 & 65 \end{bmatrix}.$$

(B)

$$(\mathbf{B}^{-1})^3 = \frac{1}{16} \left[\begin{array}{cc} -65 & 63 \\ 63 & -65 \end{array} \right].$$

(C)

$$(\mathbf{B}^{-1})^3 = \frac{1}{16} \begin{bmatrix} -63 & 65 \\ 65 & -63 \end{bmatrix}.$$

(D)

$$(B^{-1})^3 = \frac{1}{16} \begin{bmatrix} 63 & -65 \\ -65 & 63 \end{bmatrix}.$$

(E) None of the above can be true.

共13頁第3頁

4. Which of the following statements is/are false?

- (A) If \mathcal{V} is a real vector space of dimension k, then every generating set for \mathcal{V} contains exactly k real vectors.
- (B) If S is a linearly independent set of k vectors from a vector space V of dimension k, then S is a basis for V.
- (C) If \mathcal{V} is a subspace of \mathcal{W} , then the dimension of \mathcal{V} is less than or equal to the dimension of \mathcal{W} .
- (D) If T is a linear operator on \mathbb{R}^n , $\mathcal{B} = \{\underline{b}_1, \dots, \underline{b}_n\}$ is a basis for \mathbb{R}^n , $\mathbf{B} = [\underline{b}_1, \dots, \underline{b}_n]$, and \mathbf{A} is the standard matrix of T, then the matrix representation of T with respect to \mathcal{B} is $[T]_{\mathcal{B}} = \mathbf{B}\mathbf{A}\mathbf{B}^{-1}$.
- (E) All of the above are true.

- 5. On the two-dimensional xy-plane, let $T(\underline{m})$ be the linear transformation that will rotate the vector $\underline{m} = [m_1, m_2]^{\top}$ by 60 degrees counterclockwise, and let $U(\underline{m})$ be the linear transformation that will generate the reflection of \underline{m} about the x-axis. Which of the following statements is/are true regarding $U(T(\underline{m})) = [u_1, u_2]^{\top}$ given $\underline{m} = [1, 1]^{\top}$?
 - (A) $u_1 + u_2 = 1$.
 - (B) $u_2 u_1 = 1$.
 - (C) $2u_1u_2 = 1$.
 - (D) $u_1 < 1$.
 - (E) None of the above is true.

共 13 頁 第 4 頁

- 6. For a symmetric and positive semi-definite matrix $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{n \times n}$, which of the following statements is/are true?
 - (A) $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} \ge 0$.
 - (B) $\left(\frac{1}{n}\operatorname{tr}(\mathbf{A})\right)^n < \det(\mathbf{A}).$
 - (C) $|\underline{x}^{\top} \mathbf{A} \underline{y}| \leq \sqrt{(\underline{x}^{\top} \mathbf{A} \underline{x}) (\underline{y}^{\top} \mathbf{A} \underline{y})}$ for all $\underline{x}, \underline{y} \in \mathbb{R}^n$.
 - (D) If no eigenvalues of **A** are in the interval [p,q], then $(\mathbf{A} p \mathbf{I}_n)(\mathbf{A} q \mathbf{I}_n)$ is positive definite.
 - (E) None of the above is true.

- 7. Let \mathcal{M} and \mathcal{N} be two non-trivial subspaces of \mathbb{R}^n with sum $\mathcal{M} + \mathcal{N} = \{\underline{y} + \underline{z} : \underline{y} \in \mathcal{M}, \underline{z} \in \mathcal{N}\} = \mathbb{R}^n$. Which of the following statements is/are true?
 - (A) $\dim(\mathcal{M}) + \dim(\mathcal{N}) = n$.
 - (B) For any $\underline{x} \in \mathbb{R}^n$, there exists a unique pair $\underline{y} \in \mathcal{M}$ and $\underline{z} \in \mathcal{N}$ such that $\underline{x} = \underline{y} + \underline{z}$.
 - (C) If $\mathcal{B}_{\mathcal{M}}$ and $\mathcal{B}_{\mathcal{N}}$ are respectively bases for \mathcal{M} and \mathcal{N} , then $\mathcal{B}_{\mathcal{M}} \cup \mathcal{B}_{\mathcal{N}}$ is a basis for \mathbb{R}^n .
 - (D) Let **P** be the orthogonal projection matrix from \mathbb{R}^n onto \mathcal{M} . Then $\underline{x}^{\top} \mathbf{P} \underline{x} = 0$ whenever $\underline{x} \in \mathcal{N}$.
 - (E) None of the above is true.

共 13頁第5頁

8. Let \mathcal{U} and \mathcal{V} be two finite-dimensional real inner product spaces with Euclidean inner products $\langle \bullet, \bullet \rangle_{\mathcal{U}}$ and $\langle \bullet, \bullet \rangle_{\mathcal{V}}$ and with ordered orthonormal bases $\mathcal{B}_{\mathcal{U}} = \{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ and $\mathcal{B}_{\mathcal{V}} = \{\underline{v}_1, \underline{v}_2\}$, respectively. Let $T: \mathcal{U} \to \mathcal{V}$ be a linear transformation, and the matrix representation of T with respect to $\mathcal{B}_{\mathcal{U}}$ and $\mathcal{B}_{\mathcal{V}}$ is given by

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 0 & -1 \end{array} \right].$$

Which of the following statements is/are true?

- (A) T is one-to-one and onto.
- (B) If $\underline{u} = \underline{u}_1 \underline{u}_3$, then $\sqrt{\langle T(\underline{u}), T(\underline{u}) \rangle_{\mathcal{V}}} = \sqrt{2}$.
- (C) For all $\underline{u} \in \mathcal{U}$ satisfying $T(\underline{u}) = \underline{v}_1 + 3\underline{v}_2$, the minimum value of $\sqrt{\langle \underline{u}, \underline{u} \rangle_{\mathcal{U}}}$ is equal to $\sqrt{5}$.
- (D) The element \underline{u} that achieves the minimal value of $\sqrt{\langle \underline{u}, \underline{u} \rangle_{\mathcal{U}}}$ in statement (C) is $\underline{u}_1 + 2\underline{u}_3$.
- (E) None of the above is true.

- 9. For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathrm{rank}(\mathbf{A}) = k < n$, write $\mathbf{A} = \mathbf{Q}\mathbf{R}$, where $\mathbf{Q} \in \mathbb{R}^{n \times k}$ has orthonormal columns and $\mathbf{R} = [r_{i,j}] \in \mathbb{R}^{k \times n}$ satisfying $r_{i,j} = 0$ for all $i = 2, \ldots, k$ and $j = 1, \ldots, i 1$. Which of the following statements is/are always true?
 - (A) The row space of R equals the row space of A.
 - (B) The space spanned by the first k+1 columns of A has dimension equal to k.
 - (C) Given $\underline{b} \in \mathbb{R}^n$, the vector $\underline{x} \in \mathbb{R}^n$ that minimizes $\|\mathbf{A}\underline{x} \underline{b}\|$ satisfies $\mathbf{A}\underline{x} = \mathbf{Q}\mathbf{Q}^{\top}\underline{b}$.
 - (D) The vector \underline{x} in the above statement (C) is unique.
 - (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共13頁第6頁

- 10. A square matrix $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{3\times 3}$ with $a_{i,j} \neq 0$ for all i,j has eigenvalues 0, 1 and 3. Which of the following statements is/are true?
 - (A) A is diagonalizable.
 - (B) $\operatorname{rank}(\mathbf{A}\mathbf{A}^{\top}) = 1$.
 - (C) The linear equation $(\mathbf{A} + 2\mathbf{I}_3)\underline{x} = \underline{b}$ with unknown \underline{x} is consistent for any $\underline{b} \in \mathbb{R}^3$.
 - (D) If **A** is symmetric, then $\underline{y}^{\top} \mathbf{A} \underline{x}$ defines an inner product for all $\underline{x}, \underline{y} \in \mathbb{R}^3$.
 - (E) None of the above is true.

共 13 頁 第 7 頁

11. Consider the following differential equation:

$$(x^2 + 2xy - y^2) dx + (y^2 + 2xy - x^2) dy = 0.$$

Which of the following statements is/are true?

- (A) The normal form of this equation is not separable.
- (B) This equation is not exact.
- (C) There exists an integrating factor that depends only on x.
- (D) There exists an integrating factor that depends only on y.
- (E) None of the above is true.

- 12. Continue from Problem 11. Suppose (x, y) = (0, 1) is on the solution curve of the differential equation. Which of the following statements is/are true?
 - (A) (x, y) = (1, 0) is on the solution curve.
 - (B) (x, y) = (2, 2) is on the solution curve.
 - (C) $(x,y) = (\frac{1}{2}, \frac{1+\sqrt{2}}{2})$ is on the solution curve.
 - (D) (x, y) = (4, 2) is on the solution curve.
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共13頁第8頁

13. Consider the following differential equation:

$$y''(x) + y'(x) + (1 + x - x^2)y(x) = 0.$$

Which of the following statements is/are true?

- (A) This is a nonlinear equation.
- (B) There exists a trivial solution y(x) = 0 for all x.
- (C) There exists a nontrivial solution for this equation.
- (D) For this equation, there exist three particular solutions that are linearly independent over \mathbb{R} .
- (E) None of the above is true.

- 14. Continue from Problem 13. Determine the particular solution y(x) satisfying y(0) = 1 and y'(0) = 0. Which of the following statements is/are true?
 - (A) y''(0) = -1.
 - (B) $\lim_{x\to\infty} y(x) = 0$.
 - (C) $y(1) = e^{-1}$.
 - (D) $y(2) = e^{-2}$.
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共13頁第9頁

15. Consider the following system of differential equations:

$$x'(t) - 4x(t) + y''(t) = t^{2}$$
$$x'(t) + x(t) + y'(t) = 0$$

Suppose x(0) = x'(0) = y(0) = 0. Which of the following statements is/are true?

- (A) y''(t) + 4y(t) + 1 = 0.
- (B) $x''(t) + 4x(t) + t^2 = 0$.
- (C) $x^{(4)}(0) = -2$.
- (D) $y^{(4)}(0) = \pi$.
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共13頁第10頁

16. Consider the following second order differential equation

$$y''(x) + (x-2)y'(x) + y(x) = x,$$

where the function y(x) satisfies the conditions y(2) = 2 and y'(2) = 1. Let

$$y(x) = (x-2)^r \sum_{n=0}^{\infty} a_n (x-2)^n$$

with $r, a_n \in \mathbb{R}$ and $a_0 \neq 0$ be the series solution to the above differential equation. Which of the following statements is/are true regarding the values of r and a_n ?

- (A) r = 0.
- (B) $a_2 = \frac{1}{2}$.
- (C) $a_3 = -\frac{1}{6}$.
- (D) $a_4 = \frac{1}{30}$
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 13 頁 第 1 1 頁

17. Consider the following differential equation defined for all $t \in \mathbb{R}$

$$tx''(t) - 2x'(t) - tx(t) = g(t)$$

with initial conditions x(0) = 0 and x(1) = 1, where g(t) = f(t) * f(t) and $f(t) = \sqrt{t-1}u(t-1)$. Which of the following statements is/are true regarding the values of $F(s) = \mathcal{L}\{f(t)\}$ and the function g(t)?

- (A) F(s) exists for all $s \in \mathbb{R}$ with $s \ge 1$.
- (B) F(1) > 1.
- (C) g(1.5) > 0.
- (D) g(4) > 1.
- (E) None of the above is true.

- 18. Continue from Problem 17. Which of the following statements is/are true regarding the solution x(t) to the differential equation?
 - (A) x(t) is an even function for $|t| \leq \frac{1}{2}$.
 - (B) x(-1) = 1.
 - (C) x'(0) = 0.
 - (D) x'(1) < 2.
 - (E) None of the above is true.

共13頁第12頁

19. Consider the following boundary value problem for the bivariate function v(x,t)

$$\frac{\partial}{\partial t}v(x,t) = -\frac{\partial^2}{\partial x^2}v(x,t)$$

that is defined for $x \in [-\pi, \pi]$ and $t \ge 0$ and satisfies the following conditions

$$v(-\pi, t) = v(\pi, t),$$

for all t > 0

$$\left. \frac{\partial}{\partial x} v(x,t) \right|_{x=-\pi} = \left. \frac{\partial}{\partial x} v(x,t) \right|_{x=\pi},$$

for all t > 0

$$v(x,0) = \begin{cases} 2\sin(2x), & \text{if } x \in [0,\pi] \\ \sin(4x), & \text{if } x \in [-\pi,0] \end{cases}$$

The solution v(x,t) can be represented in the following form

$$v(x,t) = \sum_{n=0}^{\infty} e^{d_n t} \left[a_n \cos(f_n x) + b_n \sin(f_n x) \right]$$

for some $a_n, b_n, d_n, f_n \in \mathbb{R}$ with $0 \le f_0 < f_1 < \cdots$ and $|a_n| + |b_n| > 0$ for all $n = 0, 1, \ldots$ Which of the following statements is/are true regarding the values of a_n and b_n in the representation of solution v(x,t)?

- (A) $a_0 \ge 1 \text{ and } b_0 \le 0.$
- (B) $a_1 \le 1 \text{ and } b_1 \ge 1.$
- (C) $a_2 \le 0 \text{ and } b_2 \ge 0.$
- (D) $a_3 \ge 0 \text{ and } b_3 \le 1.$
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 13 頁 第 13 頁

- 20. Continue from Problem 19. Which of the following statements is/are true regarding the values of d_n and f_n in the representation of solution v(x,t)?
 - (A) $f_0 = 0$.
 - (B) $f_1 = 2$.
 - (C) $d_2 = -9$.
 - (D) $d_3 = 25$.
 - (E) None of the above is true.