博碩士論文 110426001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.227.0.192
姓名 林宏軒(Hung-Hsuan Lin)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 利用馬可夫決策過程製定狀態檢修策略
(Purposing a Condition Based Maintenance Policy Using Markov Decision Process)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今自動化、大量生產的製造業中,機台維修的議題持續受到人們的關注。維修策略的制定對於管理者來說相當困難,關於機台的信息充滿著不確定性,如運作的時間長短、工作條件的設定、機台效能的衰退,管理者需要在有限資訊的情況下進行決策。在機台維修的研究中,經常利用馬可夫決策過程為模型探討維修時間的規劃,在固定的時間周期進行維修動作的決策,以動態規劃求解得到長期最佳的維修時間計畫,並稱之為最佳決策。我們希望在馬可夫決策過程中考量機台因為工作條件、環境因素不同而有不同的衰退速率或轉移機率。我們希望管理者可以根據機台的資訊即時的估計衰退速率、轉移矩陣,有效的衡量機台所需承擔的風險,可以制定更好的維修計畫使的總成本降低。

在此研究中我們假設機台的狀態有兩種,而狀態的衰退速率會依據當前的工作條件有所差異。我們希望利用 Cox 比例風險模型透過機台的工作條件、環境資訊估計各個狀態的失效率,並利用其結果估計馬可夫決策過程中的轉移機率。藉由機台資料即時的更新調整維修計畫,降低維修、營運的成本。
摘要(英) In today’s automated and mass-produced manufacturing industry, the issue of machine maintenance continues to attract people’s attention. It is very difficult for managers to formulate maintenance strategies. The information about machines is diversity. In the research
of machine maintenance, the Markov Decision Process is often used as a model to discuss the planning of maintenance time, the decision-making of maintenance actions is made in a
fixed time period, and the long-term optimal maintenance solution is obtained by dynamic programming. We want that managers can estimate the deterioration rate and transition
probability in real time based on the information of the machine.

We want to use the Cox proportional hazard model to estimate the failure rate of the machine through the working conditions and environmental information. Using the results
to estimate the transition probability in the Markov Decision Process, and determine the maintenance policy. By updating information to adjust the maintenance plan in real time, the cost of maintenance and operation can be reduced.
關鍵字(中) ★ 狀態檢修
★ Cox 比例風險模型
★ 馬可夫決策過程
關鍵字(英) ★ Condition Based Maintenance
★ Cox Proportional Hazard Model
★ Markov Decision Process
論文目次 Contents
中文摘要 i
Abstract ii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
1.3 Research Framework 3
Chapter 2 Literature Review 5
2.1 Condition Based Maintenance 5
2.2 Remaining Useful Life 6
2.2.1 Machine Learning Methods for Remaining Useful Life 7
2.2.2 Statistical Methods for Remaining Useful Life 8
2.3 Maintenance Policy 11
Chapter 3 Methodology 14
3.1 Cox Proportional Hazard Model and Markov Decision Process 14
3.1.1 Introduction of the Cox Proportional Hazard Model 14
3.1.2 Introduction of the Markov Decision Processes 17
3.1.3 Markov Decision Process in Maintenance Problem 20
3.2 Condition Based Maintenance Using Markov Decision Process 25
3.2.1 The Framework of Condition Based Maintenance Policy 27
3.2.2 Condition Based Transition Probability 32
Chapter 4 Numerical Study 36
4.1 Introduction of the Datasets 36
4.2 Condition Based Maintenance Policy of the Datasets 39
4.3 Condition Effects on Maintenance Policy 52
4.4 Cost Effects on Maintenance Policy 57
Chapter 5 Conclusion and Summary 60
Appendix 65
Reference 70
參考文獻 1. Abeygunawardane, S. K., Jirutitijaroen, P., and Xu, H. Adaptive maintenance policies for aging devices using a markov decision process. IEEE Transactions on Power Systems 28, 3 (2013), 3194–3203.
2. Ahmad, R., and Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Computers & industrial engineering 63, 1 (2012), 135–149.
3. Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., and McArthur, S.Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques. Wind Energy 22, 3 (2019), 360–375.
4. Crowley, J., and Hu, M. Covariance analysis of heart transplant survival data. Journal of the American Statistical Association 72, 357 (1977), 27–36.
5. Fengfei, W., Shengjin, T., Xiaoyan, S., Liang, L., Chuanqiang, Y., and Xiaosheng, S. Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data. Journal of Systems Engineering and Electronics (2023).
6. Gebraeel, N., and Pan, J. Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. IEEE Transactions on Reliability 57, 4 (2008), 539–550.
7. Howard, R. A. Dynamic programming and markov processes.
8. Jorgenson, D. W., McCall, J. J., and Radner, R. Optimal maintenance of stochastically failing equipment. Tech. rep., RAND CORP SANTA MONICA CA, 1966.
9. Kharoufeh, J. P., and Cox, S. M. Stochastic models for degradation-based reliability. IIE Transactions 37, 6 (2005), 533–542.
10. Li, W., and Liu, T. Time varying and condition adaptive hidden markov model for tool wear state estimation and remaining useful life prediction in micro-milling. Mechanical Systems and Signal Processing 131 (2019), 689–702.
11 Ling, M. H., Tsui, K. L., and Balakrishnan, N. Accelerated degradation analysis for the quality of a system based on the gamma process. IEEE Transactions on Reliability 64, 1 (2014), 463–472.
12. Nourelfath, M., Nahas, N., and Ben-Daya, M. Integrated preventive maintenance and production decisions for imperfect processes. Reliability engineering & system safety 148 (2016), 21–31.
13. Rodrigues, L. R. Remaining useful life prediction for multiple-component systems based on a system-level performance indicator. IEEE/ASME Transactions on Mechatronics 23, 1 (2017), 141–150.
14. Si, X.-S., Wang, W., Hu, C.-H., and Zhou, D.-H. Remaining useful life estimation–a review on the statistical data driven approaches. European journal of operational research 213, 1 (2011), 1–14.
15. Thijssens, O., and Verhagen, W. J. Application of extended cox regression model to time-on-wing data of aircraft repairables. Reliability Engineering & System Safety 204 (2020), 107136.
16. Wang, S., Jin, S., Bai, D., Fan, Y., Shi, H., and Fernandez, C. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Reports 7 (2021), 5562–5574.
17. Yan, M., Wang, X., Wang, B., Chang, M., and Muhammad, I. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. ISA transactions 98 (2020), 471–482.
18. Yang, L., Ma, X., and Zhao, Y. A condition-based maintenance model for a three-state system subject to degradation and environmental shocks. Computers & Industrial Engineering 105 (2017), 210–222.
19. Zhang, H., Mo, Z., Wang, J., and Miao, Q. Nonlinear-drifted fractional brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Reliability 69, 2 (2019), 768–780.
20. Zhang, H., Zhou, D., Chen, M., and Xi, X. Predicting remaining useful life based on a generalized degradation with fractional brownian motion. Mechanical Systems and Signal Processing 115 (2019), 736–752.
21. Zhang, M., Gaudoin, O., and Xie, M. Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance. European Journal of Operational Research 245, 2 (2015), 531–541.
22. Zhang, X., and Gao, H. Road maintenance optimization through a discrete-time semimarkov decision process. Reliability Engineering & System Safety 103 (2012), 110–119.
23. Zhou, P., and Yin, P. An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics. Renewable and Sustainable Energy Reviews 109 (2019), 1–9. 71
24. Zhu, Q., Peng, H., and van Houtum, G.-J. A condition-based maintenance policy for multi-component systems with a high maintenance setup cost. OR Spectrum 37 (2015), 1007–1035
指導教授 曾富祥(Fu-Shiang Tseng) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明