博碩士論文 110223057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.218.114.244
姓名 林信宏(LIN, HSIN-HUNG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發以喹啉及稠合喹啉衍生物為主結構單元之螢光探針並探討其螢光對環境改變之響應能力
(Development of fluorescent probes with quinoline and fused quinoline derivatives as the main structural unit and investigation of their fluorescence response to environmental changes)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在複雜環境上量測物質或環境變化經常需要使用特定儀器,而使用螢光探
針作為量測媒介則可以簡化量測流程與工具,並可應用於可視化生物體內
各組織的狀況。
本篇論文成功以喹啉與稠合喹啉衍生物為主結構單元並合成出四個系
列的模型分子,藉由實驗量測其線性與非線性光學性質可以得知這些分子
具有以下特性:
(1) 以 D-π-A 方式組成之第一、二、三系列條形分子有明顯溶劑效應。
(2) 對同一系列分子而言,在固定推電子基團的情況下,改變拉電子基
團共軛性質會影響螢光激發效率,相比於 benzothiazole,以
triazolopyridine 與 oxadiazole 做為拉電子基團雖在高極性溶劑具有較
高的螢光量子產率,但雙光子激發截面值皆較低。
(3) 第二系列分子在結構中引入烷氧基有助於提升螢光量子產率與雙光
子螢光表現,並在不改變共軛結構下於末端連接不同標定官能基不
會對螢光性質有顯著改變。
(4) 本篇論文中化合物雖然在溶劑態時具有優秀的螢光量子產率與亮
度,但在固態的螢光量子產率表現較差。
(5) 以雙鍵延長共軛系統導致在高極性溶劑下螢光量子產率降低,但對
於環境黏稠度的改變具有敏感性。
(6) 以含氮雜環結構作為共軛系統之螢光探針對於酸性環境具有敏感
性,並可於鹼性環境回復原有光學性質。
摘要(英) Detection of substances or environmental changes in a complex
environment often requires specific instruments. However, using fluorescent
probes as media can simplify the measurement processes and tools. And such
probes can be applied to visualize the status of various tissues in living
organisms.
In this thiesis, four series of model compound were successfully synthesized
using quinoline and fused quinoline derivatives as the main structural units.
Through the experimental measurement of linear and nonlinear optical
properties, it can be known that these molecules have the following
characteristics:
(1) Model compounds of D-π-A type show very salient solvent effect.
(2) For the same series of molecules, keeping same electron-donating group
while changing the electron-withdrawing group will affect the fluorescence
efficiency. Compare to benzothiazole, using triazolopyridine or oxadiazole as
electron-withdrawing groups lead to high fluorescence quantum yield in high
polar solvent but low two-photon excitation cross section.
(3) The introduction of alkoxy groups in the second series of model molecules
can improve the fluorescence quantum yield and two-photon emission
performance. In addition, attaching different bio-labeling functional groups to
the aforementioned model structures does not change their fluorescent
properties.
iii
(4) Although these final compounds have excellent fluorescence quantum
yields and brightness in solvents, the fluorescence quantum yields of these
compounds in the solid state are poor.
(5) Extending the conjugated system with double bonds leads to a decrease in
the fluorescence quantum yield in high polar solvents, but makes it sensitive to
the viscosity.
(6) Using heterocyclic units containing nitrogen as a part of conjugated systems
can make fluorescent probes sensitive to the pH change of the environment and
the process of fluorescence color change in accordance with the pH variation is
reversible.
關鍵字(中) ★ 喹啉
★ 稠合喹啉
★ 螢光探針
★ 生物顯影
關鍵字(英)
論文目次 摘要 ........................................................................................................................ i
Abstract ................................................................................................................. ii
目錄 ...................................................................................................................... iv
圖目錄 ................................................................................................................. vii
表目錄 ................................................................................................................... x
第一章 緒論 ......................................................................................................... 1
1-1 螢光探針類型與應用 ........................................................................... 1
單光子螢光原理: .......................................................................................... 1
螢光探針作用類型: ...................................................................................... 3
螢光探針量測的優勢 ................................................................................... 7
1-2 具雙光子性質之螢光探針 ................................................................... 8
1-2-1 雙光子吸收原理 ........................................................................ 8
1-2-2 與單光子螢光探針相比之優缺點 ............................................ 9
1-2-3 雙光子探針用於生物顯影所需考量要素 .............................. 11
生物顯影因素 ............................................................................................. 11
雙光子探針光學因素 ................................................................................. 13
1-3 具雙態螢光發射之螢光分子 ............................................................. 14
1-4 研究動機與論文架構 ......................................................................... 17
第二章 分子設計與合成 ................................................................................... 18
2-1 模型分子設計概念及目的 ................................................................. 18
2-2 模型分子合成途徑 ............................................................................. 22
vi
第三章 光學性質量測與探討 ........................................................................... 29
3-1 光學性質鑑定實驗方法 ..................................................................... 29
3-2 溶液態之線性光學性質 ..................................................................... 33
3-3 雙光子螢光光學性質 ......................................................................... 45
3-4 其他凝態之光學性質 ......................................................................... 51
3-5 分子周遭環境的刺激對其螢光的影響 ............................................. 56
3-5-1 黏度 .......................................................................................... 56
3-5-2 吸附狀態 .................................................................................. 59
3-5-3 酸鹼 .......................................................................................... 60
3-6 結果與討論 .......................................................................................... 63
第四章 作為細胞影像探針之評估 ................................................................... 65
第五章 實驗藥品與合成步驟 ........................................................................... 67
5-1 合成模型分子所使用之藥品與溶劑 ................................................. 67
5-2 合成詳細步驟...................................................................................... 69
第六章 結構鑑定光譜圖 ................................................................................. 100
參考文獻 ........................................................................................................... 163
參考文獻 [1] S. Sasaki, G. P. C. Drummen, and G.-i. Konishi, "Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry," Journal of Materials Chemistry C, vol. 4, no. 14, pp. 2731-2743, 2016, doi: 10.1039/c5tc03933a.
[2] R. Hu et al., "Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives," The Journal of Physical Chemistry C, vol. 113, no. 36, pp. 15845-15853, 2009/09/10 2009, doi: 10.1021/jp902962h.
[3] Q. Li, W. Zhu, S. Gong, S. Jiang, and G. Feng, "Selective Visualization of Tumor Cell Membranes and Tumors with a Viscosity-Sensitive Plasma Membrane Probe," Anal Chem, vol. 95, no. 18, pp. 7254-7261, May 9 2023, doi: 10.1021/acs.analchem.3c00220.
[4] J. Han, S. Yang, B. Wang, and X. Song, "Tackling the Selectivity Dilemma of Benzopyrylium-Coumarin Dyes in Fluorescence Sensing of HClO and SO(2)," Anal Chem, vol. 93, no. 12, pp. 5194-5200, Mar 30 2021, doi: 10.1021/acs.analchem.0c05266.
[5] H. Wang et al., "Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device," Anal Chem, vol. 91, no. 14, pp. 9292-9299, Jul 16 2019, doi: 10.1021/acs.analchem.9b02297.
[6] T. Sun, Q. Niu, Z. Guo, and T. Li, "A simple highly sensitive and selective turn-on fluorescent chemosensor for the recognition of Pb2+," Tetrahedron Letters, vol. 58, no. 3, pp. 252-256, 2017/01/18/ 2017, doi: https://doi.org/10.1016/j.tetlet.2016.12.022.
[7] G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, "Multiphoton Absorbing Materials:  Molecular Designs, Characterizations, and Applications," Chemical Reviews, vol. 108, no. 4, pp. 1245-1330, 2008/04/01 2008, doi: 10.1021/cr050054x.
[8] M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, "Functional brain imaging using near-infrared technology," IEEE Eng Med Biol Mag, vol. 26, no. 4, pp. 38-46, Jul-Aug 2007, doi: 10.1109/memb.2007.384094.
[9] G. C. Ellis-Davies, "Two-photon microscopy for chemical neuroscience," ACS Chem Neurosci, vol. 2, no. 4, pp. 185-197, Apr 20 2011, doi: 10.1021/cn100111a.
[10] P. Ning et al., "A two-photon fluorescent probe for viscosity imaging in vivo," J Mater Chem B, vol. 5, no. 15, pp. 2743-2749, Apr 21 2017, doi: 10.1039/c7tb00136c.
[11] M. T. Anderson et al., "Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins," (in eng), Proc Natl Acad Sci U S A, vol. 93, no. 16, pp. 8508-11, Aug 6 1996, doi: 10.1073/pnas.93.16.8508.
[12] M. Albota et al., "Design of Organic Molecules with Large Two-Photon Absorption Cross Sections," Science, vol. 281, no. 5383, pp. 1653-1656, 1998, doi: doi:10.1126/science.281.5383.1653.
[13] J. L. Belmonte-Vázquez, Y. A. Amador-Sánchez, L. A. Rodríguez-Cortés, and B. Rodríguez-Molina, "Dual-State Emission (DSE) in Organic Fluorophores: Design and Applications," Chemistry of Materials, vol. 33, no. 18, pp. 7160-7184, 2021, doi: 10.1021/acs.chemmater.1c02460.
[14] A. Huber, J. Dubbert, T. D. Scherz, and J. Voskuhl, "Design Concepts for Solution and Solid-State Emitters - A Modern Viewpoint on Classical and Non-Classical Approaches," Chemistry, vol. 29, no. 2, p. e202202481, Jan 9 2023, doi: 10.1002/chem.202202481.
[15] N. S. Kumar, M. D. Gujrati, and J. N. Wilson, "Evidence of preferential pi-stacking: a study of intermolecular and intramolecular charge transfer complexes," Chem Commun (Camb), vol. 46, no. 30, pp. 5464-6, Aug 14 2010, doi: 10.1039/c0cc00249f.
[16] J. Luo et al., "Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole," Chem Commun (Camb), no. 18, pp. 1740-1, Sep 21 2001, doi: 10.1039/b105159h.
[17] Z. Peng, Y. Ji, Z. Huang, B. Tong, J. Shi, and Y. Dong, "A strategy for the molecular design of aggregation-induced emission units further modified by substituents," Materials Chemistry Frontiers, vol. 2, no. 6, pp. 1175-1183, 2018, doi: 10.1039/c8qm00096d.
[18] T. Noguchi, B. Roy, D. Yoshihara, J. Sakamoto, T. Yamamoto, and S. Shinkai, "Emergent Molecular Recognition through Self-Assembly: Unexpected Selectivity for Hyaluronic Acid among Glycosaminoglycans," Angew Chem Int Ed Engl, vol. 55, no. 19, pp. 5708-12, May 4 2016, doi: 10.1002/anie.201511564.
[19] T. Ishiyama, M. Murata, and N. Miyaura, "Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters," The Journal of Organic Chemistry, vol. 60, no. 23, pp. 7508-7510, 1995/11/01 1995, doi: 10.1021/jo00128a024.
[20] A. Afsar, D. M. Laventine, L. M. Harwood, M. J. Hudson, and A. Geist, "Utilizing electronic effects in the modulation of BTPhen ligands with respect to the partitioning of minor actinides from lanthanides," Chem Commun (Camb), vol. 49, no. 76, pp. 8534-6, Oct 4 2013, doi: 10.1039/c3cc45126g.
[21] R. Abbel et al., "White-Light Emitting Hydrogen-Bonded Supramolecular Copolymers Based on π-Conjugated Oligomers," Journal of the American Chemical Society, vol. 131, no. 2, pp. 833-843, 2009/01/21 2009, doi: 10.1021/ja807996y.
[22] A. Rahim, S. P. Shaik, M. F. Baig, A. Alarifi, and A. Kamal, "Iodine mediated oxidative cross-coupling of unprotected anilines and heteroarylation of benzothiazoles with 2-methylquinoline," Org Biomol Chem, vol. 16, no. 4, pp. 635-644, Jan 24 2018, doi: 10.1039/c7ob02241g.
[23] J. Xia, X. Huang, and M. Cai, "Heterogeneous Copper(I)-Catalyzed Cascade Addition–Oxidative Cyclization of Nitriles with 2-Aminopyridines or Amidines: Efficient and Practical Synthesis of 1,2,4-Triazoles," (in En), Synthesis, vol. 51, no. 09, pp. 2014-2022, 2019/04/15 2019, doi: 10.1055/s-0037-1611712.
[24] K. E. Linton et al., "Colour tuning of blue electroluminescence using bipolar carbazole–oxadiazole molecules in single-active-layer organic light emitting devices (OLEDs)," Journal of Materials Chemistry, vol. 22, no. 23, 2012, doi: 10.1039/c2jm31825c.
[25] M. Zhang et al., "The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan," Chemical Communications, vol. 57, no. 72, pp. 9140-9143, 2021, doi: 10.1039/d1cc04225d.
[26] X. Yang et al., "Phosphorescent platinum(II) complexes bearing 2-vinylpyridine-type ligands: synthesis, electrochemical and photophysical properties, and tuning of electrophosphorescent behavior by main-group moieties," Inorg Chem, vol. 53, no. 24, pp. 12986-3000, Dec 15 2014, doi: 10.1021/ic502122t.
[27] G. Dey et al., "Functional molecular lumino-materials to probe serum albumins: solid phase selective staining through noncovalent fluorescent labeling," ACS Appl Mater Interfaces, vol. 6, no. 13, pp. 10231-7, Jul 9 2014, doi: 10.1021/am501619g.
[28] P. Gao, W. Pan, N. Li, and B. Tang, "Fluorescent probes for organelle-targeted bioactive species imaging," Chem Sci, vol. 10, no. 24, pp. 6035-6071, Jun 28 2019, doi: 10.1039/c9sc01652j.
指導教授 林子超 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明