博碩士論文 109523010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.128.190.102
姓名 徐啓豪(Chi-Hao Hsu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 低軌道衛星通訊之下鏈混合預編碼設計及效能模擬
(Hybrid Precoding Design and Performance Simulation for Downlink Low Earth Orbit Satellite Communications)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在後5G 及6G 無線通訊中,非地面網路通訊變得非常重要,傳統的地面通訊網路
為二維度的通訊網路,其中會遇到許多無法避開的問題,像是都市地區嚴重的環境干
擾以及遮蔽眾多,而非都市地區地面網路的部屬和維護成本相當高,而衛星網路可以
三維的角度達到廣義的覆蓋面積,並在第一時間傳輸資料給指定的地面用戶,對於海
洋或森林等非人口密集地區提供了非常大的效益,大幅度的提供與地面通訊的靈活性
和整合性。
本研究只要探討使用低軌道衛星進行下鏈通訊傳輸資料至地面用戶,由於三維度
通訊網路中無線鏈路的長往返延遲和都卜勒效應的影響,使低軌道衛星的資料傳輸受
到雜訊干擾,使用預編碼算法以及功率控制策略,以消除通訊環境下的雜訊干擾,並
降低資料傳輸錯誤率。
設計問題採用最小化資料傳輸錯誤率與最大化總資料傳輸率作為設計目標。此聯
合設計是一個非凸問題。為解決這些設計困難,本研究提出使用低軌道衛星混合預編
碼算法來解決這個聯合問題,通過應用半正定鬆弛算法將原始問題轉化為寬鬆凸子問
題,進而求得低軌道衛星最低資料傳輸錯誤率算法。使用類比預編碼器使衛星先行對
準固定的幾個方向,在使用數位預編碼器消除其餘的雜訊干擾。
摘要(英) In Beyond Fifth-Generation (B5G) and Sixth-Generation (6G) wireless communication,
non-terrestrial network (NTN) communication becomes very important. The traditional
terrestrial communication network is a two-dimensional communication network, which will
encounter many unavoidable problems, such as serious environmental interference in urban
areas And there are many shades, the deployment and maintenance costs of the ground network
in non-urban areas are quite high, and the satellite network can achieve a broad coverage area
from a three-dimensional perspective, and transmit data to designated ground users in the first
time. For oceans or forests Non-populated areas such as non-populated areas provide very large
benefits, and provide a large degree of flexibility and integration with ground communications.
This study only discusses the use of low earth orbit (LEO) satellites for downlink
communication to transmit data to ground users. Due to the long round-trip delay of the wireless
link in the three-dimensional communication network and the influence of the Doppler effect,
the data transmission of (LEO) satellites is interfered by noise , using precoding algorithm and
power control strategy to eliminate noise interference in the communication environment and
reduce the error rate of data transmission.
The design problem takes minimizing the data transmission error rate and maximizing the
total data transmission rate as design goals. This joint design is a non-convex problem. In order
to solve these design difficulties, this study proposes to use a hybrid precoding algorithm for
(LEO) satellites to solve this joint problem. By applying the semidefinite relaxation (SDR)
algorithm, the original problem is transformed into a loose convex subproblem, and then the
iii
lowest data transmission error rate algorithm for (LEO) satellites is obtained. The analog
precoder is used to align the satellites in several fixed directions in advance, and the digital
precoder is used to eliminate the rest of the noise interference.
關鍵字(中) ★ 非地面網路
★ 衛星通訊網路
★ 預編碼算法
★ 功率控制
★ 混合預編碼算法
★ 半正定鬆弛算法
關鍵字(英) ★ Index Terms- non-terrestrial network communication
★ satellite network
★ precoding algorithm
★ power control
★ hybrid precoding algorithm
★ semi-positive definite relaxation algorithm
論文目次 摘要 ................................................................................................................................ i
Abstract .......................................................................................................................... ii
目錄 ............................................................................................................................... v
圖目錄 ......................................................................................................................... vii
表目錄 ........................................................................................................................ viii
符號說明 ...................................................................................................................... ix
第一章 緒論 .................................................................................................................. 1
1-1 研究背景與動機 ............................................................................................. 1
1-2 研究目的與問題 ............................................................................................. 3
1-3 文獻探討 ......................................................................................................... 5
1.3.1 低軌道衛星之預編碼應用 .................................................................. 5
1.3.2 混合預編碼演算法之無線通訊系統應用 .......................................... 7
1-4 論文貢獻 ....................................................................................................... 13
第二章 低軌道衛星下鏈通訊 .................................................................................... 14
2-1 通道模型 ....................................................................................................... 14
2-2 系統模型 ....................................................................................................... 15
2-3 最佳化問題 ................................................................................................... 16
第三章 低軌道衛星預編碼器演算法 ........................................................................ 17
3-1 低軌衛星下鏈地面用戶純數位預編碼演算法 ........................................... 17
..... 3.1.1 最大比例合併 (Maximum Ratio Combining, MRC) 預編碼演算法..17
...3.1.2 迫零 (Zero-forcing, ZF) 預編碼演算法 ………………………..……18
3-2 低軌衛星下鏈地面用戶混和預編碼演算法 ............................................... 19
3.2 基於SVD 混合預編碼演算法 ..................................................................... 19
第四章 基於離散相位低軌道衛星混合預編碼演算法設計 .................................... 21
vi
4.1 基於基因演算法(Genetic Algorithm,GA)類比預編碼演算法 .................... 21
4.2.1 基於SDR 離散相位低軌道衛星類比預編碼器優化設計 ....................... 24
4.2.2 基於SDR 離散相位低軌道衛星數位預編碼器優化設計 ....................... 28
第五章 模擬結果 ........................................................................................................ 32
5-1 類比預編碼器量化比較 ............................................................................... 33
5-2 混合預編碼演算法以及純數位預編碼演算法位元錯誤率比較 ............... 41
5-3 混合預編碼演算法以及純數位預編碼演算法總傳輸率比較 ................... 44
第六章 結論 ................................................................................................................ 46
參考文獻 ..................................................................................................................... 47
參考文獻 [1] M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and
opportunities,’’ IEEE Netw., vol. 35, no. 2, pp. 244–251, Mar./Apr. 2021,
[2] Lin, Xingqin, S. Cioni, G. Charbit, N. Chuberre, Sven Hellsten and Jean-Francois
Boutillon. “On the Path to 6G: Low Orbit is the New High.” ArXiv abs/2104.10533,
2021.
[3] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C.
M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G.
Goussetis, “Satellite communications in the new space era: A survey and future
challenges,” IEEE Commun. Surv. Tut., vol. 23, no. 1, pp. 70–109, Feb. 2021.
[4] Z. Jia, M. Sheng, J. Li, D. Niyato, and Z. Han, “LEO-satellite-assisted UAV: Joint
trajectory and data collection for Internet of Remote Things in 6G aerial access
networks,” IEEE Internet Things J., vol. 8, no. 12, pp. 9814–9826, Jun. 2021.
[5] A. I. Perez-Neira, M. A. Vazquez, M. R. B. Shankar, S. Maleki, and S. Chatzinotas,
“Signal processing for high-throughput satellites: Challenges in new interferencelimited
scenarios,” IEEE Signal Process. Mag., vol. 36, no. 4, pp. 112–131, Jul. 2019.
[6] B. Shankar, M. E. Lagunas, S. Chatzinotas, and B. Ottersten, “Precoding for satellite communications: Why, how and what next?” IEEE Commun. Lett., vol. 25, no. 8, pp. 2453–2457, Aug. 2021.
[7] Z. Lin, M. Lin, J. Ouyang, W.-P. Zhu, A. D. Panagopoulos, and M.-S. Alouini, “Robust Secure Beamforming for Multibeam Satellite Communication Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6202-6206, June 2019.
[8] X. Zhang, J. Wang, C. Jiang, C. Yan, Y. Ren, and L. Hanzo, “Robust Beamforming for Multibeam Satellite Communication in the Face of Phase Perturbations”, IEEE Trans. Veh. Technol., Vol. 68, no. 3, pp. 3043- 3047, Mar. 2019.
[9] M. Roper and A. Dekorsy, “Robust distributed MMSE precoding in ¨ satellite constellations for downlink transmission,” in 2019 IEEE 2nd 5G World Forum (5GWF), 2019.
[10] Z. An, G. Song and H. Chen, "Open-Loop Precoding Scheme for Multi-Beam Mobile Satellite Communication Systems,"2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018
[11] Y. Yan, K. An, B. Zhang, S. Li, and D. Guo, “Outage constrained robust beamforming for multicast multibeam satellite systems with a phase error,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 4152–4156, Oct. 2020.
[12] C. Qi and X. Wang, “Precoding design for energy efficiency of multibeam satellite communications,” IEEE Communications Letters, vol. 22, pp. 1826–1829, 2018.
[13] J. Chu, X. Chen, C. Zhong and Z. Zhang, "Robust Design for NOMA-Based Multibeam LEO Satellite Internet of Things," in IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1959-1970, 1 Feb.1, 2021, doi: 10.1109/JIOT.2020.3015995.
[14] A. Ivanov, M. Stoliarenko, A. Savinov and S. Novichkov, "Physical Layer Representation in LEO Satellite with a Hybrid Multi-Beamforming," 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019, pp. 140-145, doi: 10.1109/IWCMC.2019.8766595.
[15] Q. Song, S. Zhao and Q. Shi, “Secure Satellite-Terrestrial Transmission via Hybrid Analog-Digital Beamforming,” in Proc. IEEE WCSP, pp. 1-6, 2018.
[16] Z. Lin, M. Lin, B. Champagne, W. -P. Zhu and N. Al-Dhahir, "Robust Hybrid Beamforming for Satellite-Terrestrial Integrated Networks," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP.
[17] A. H. Khan, M. A. Imran, and B. G. Evans, “Semi-Adaptive Beamforming for OFDM Based Hybrid Terrestrial-Satellite Mobile System,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3424-3433, Oct. 2012.
[18] Y. Wang, Q. Li, J. Jiao, S. Wu, and Q. Zhang, “ARM: Adaptive random-selected multi-beamforming estimation scheme for satellitebased Internet of Things,” IEEE Access, vol. 7, pp. 63264–63276, 2019.
[19] Ivanov, R. Bychkov, and E. Tcatcorin, “Spatial Resource Management in LEO Satellite,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15623-15632, Dec. 2020.
[20] Y. D. Zhang and K. D. Pham, “Joint precoding and scheduling optimization in downlink multicell satellite communications,” in 2020 54th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2020, pp. 480–484.
[21] C. Qi, H. Chen, Y. Deng, and A. Nallanathan, “Energy efficient multicast precoding for multiuser multibeam satellite communications,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 567–570, 2019.
[22] M. Á. Vázquez, M. R. B. Shankar, C. I. Kourogiorgas, P.-D. Arapoglou, V. Icolari, and S. Chatzinotas, “Precoding, Scheduling, and Link Adaptation in Mobile Interactive Multibeam Satellite Systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 5, pp. 971-980, May 2018.
[23] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-Phase-Shift- Based RF-Baseband Codesign for MIMO Antenna Selection,” IEEE Trans. Signal Processing, vol. 53, no. 11, Nov. 2005, pp. 4091–4103.
[24] M. M. Molu, P. Xiao, M. Khalily, K. Cumanan, L. Zhang and R. Tafazolli, "Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems," in IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 1445-1459, March 2018
[25] A. Bandi, B. Shankar, S. Chatzinotas, and B. Ottersten, “A Joint Solution for Scheduling and Precoding in Multiuser MISO Downlink Channels,” IEEE Trans. Wireless Commun., Vol. 19, No. 1, pp. 475-490, Jan. 2020.
[26] A. Koc, A. Masmoudi, and T. Le-Ngoc, ``3D angular-based hybrid precoding for multi-cell MU-massive-MIMO systems in C-RAN architecture,′′ in Proc. IEEE 31st Annu. Int. Symp. Pers., Indoor Mobile Radio Commun., Aug. 2020, pp. 1_6.
[27] X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, ``Energy-ef_cient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays,′′ IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 998_1009, Apr. 2016.
[28] H. Lee, I. Sohn, D. Kim, and K. B. Lee, “Generalized MMSE beamforming for downlink MIMO systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–6.
[29] S. Gherekhloo, K. Ardah, and M. Haardt, ``Hybrid beamforming design 1057 for downlink MU-MIMO-OFDM millimeter-wave systems,′′ in Proc. 1058 IEEE 11th Sensor Array Multichannel Signal Process. Workshop (SAM), 1059 Jun. 2020, pp. 1_5.
[30] F. Sohrabi and W. Yu, “Hybrid digital and analog Beamforming design for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016
[31] A. J. Ortega, R. Sampaio-Neto, and R. P. David, “Hybrid precoded index ´ modulation in downlink mmwave MU-MIMO systems,” in 2019 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2019, pp. 329–333.
[32] Y. Zhang, J. Du, Y. Chen, X. Li, K. M. Rabie, and R. Kharel, “Near-optimal design for hybrid beamforming in mmwave massive multi-user mimo systems,” IEEE Access, vol. 8, pp. 129 153–129 168, 2020
[33] A. Morsali and B. Champagne, “Robust hybrid analog/digital beamforming for uplinkmassive-MIMOwith imperfect CSI,” in Proc. IEEEWireless Commun. Netw. Conf., 2019, pp. 1–6.
[34] F. -C. Wei, M. -L. Ku and C. -D. Chung, "Millimeter-Wave Full-Duplex MIMO Systems with Hybrid Beamforming," 2018 10th International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 2018
[35] L. Sun, Y. Qin, Z. Zhuang, R. Chen, Y. Zhang, J. Lu, F. Shu, and J. Wang, ``A robust secure hybrid analog and digital receive beamforming scheme for ef_cient interference reduction,′′ IEEE Access, vol. 7, pp. 22227_22234, 2019.
[36] Z. Lin, M. Lin, J. Wang, T. de Cola, and J. Wang, “Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 657-670, June 2019.
[37] M. Joham, “On the Equivalence of two optimizations for the receive matched filter,” Munich Univ. Technol., Munich, Germany, Tech. Rep. TUM-LNS-TR-02-04, Jul. 2002. In German.
[38] M. Joham, W. Utschick, and J. Nossek, “Linear transmit processing in MIMO communications systems,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2700–2712, 2005.
[39] J. Wang and M. Bengtsson, “Joint Optimization of the Worst-Case Robust MMSE MIMO Transceiver,” IEEE Signal Processing Lett., vol. 18, no. 5, pp. 295–298, May 2011.
[40] J. Wang and D. P. Palomar, “Robust MMSE Precoding in MIMO Channels With Pre-Fixed Receivers,” IEEE Trans. Signal Processing, vol. 58, no. 11, pp. 5802–5818, Nov. 2010.
[41] Y. C. Eldar, “Least-squares inner product shaping,” Linear Algebra and its Applications, vol. 348, no. 1, pp. 153–174, 2002.
[42] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., vol. 38, pp. 49–95, 1996.
[43] C. Helmberg, F. Rendl, R. J. Vanderbei, and H.Wolkowicz, “An interiorpoint method for semidefinite programming,” SIAM J. Optim., vol. 6, no. 2, pp. 342–361, 1996.
[44] J. G. Proakis, Digital Communications, Third ed. NewYork: McGraw- Hill, 1995.
R. Fletcher, Practical Methods of Optimization. New York: Wiley, 1987.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2023-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明