博碩士論文 110523042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.224.37.68
姓名 王亮心(Liang-Xin Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 多用戶大規模多輸入多輸出正交分頻多工低軌道衛星通訊系統之使用者選擇及混合波束成型設計
(User Selection Algorithms and Hybrid Beamforming Design for Multiuser Massive MIMO-OFDM LEO Satellite Communication Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 隨著射頻元件以及天線技術的突破,低軌道衛星通訊在B5G大頻寬時代逐漸盛行,且因為可以支持高資料傳輸率及大幅改善硬體成本高昂的問題,受到人們的高度關注,被視為是未來蜂巢式網絡中非常有潛力的技術之一。本論文基於多用戶 (MU) 大規模 MIMO 低軌道衛星通訊系統設計混合波束成型,目標是最小化上行鏈路的總系統傳輸功率,同時必須確保在一定的服務質量(QoS)如每個用戶的位元/塊錯誤率和資料傳輸率的情況下。同時,我們還提出一種用戶選擇的方案,根據每個使用者在每個子通道做的奇異值分解之結果,在眾多使用者中優先挑選出通道條件較佳之使用者作訊息傳輸。在傳輸過程中,不同頻率上的信號可能會受到不同的衰減、多路徑干擾、衰減失真等影響,從而導致通道的頻率響應有所差異,所以正交分頻多工通常被用來對抗通道的頻率選擇性。除此之外,現有的研究大多僅關注混合波束成型演算法的設計,關於傳輸數據時應該如何選擇調變或編碼的問題幾乎沒有探討過。基於這個想法,對於用戶選擇配置和波束成型設計中的傳輸問題,我們設計的演算法能提供合適的調變與編碼方案。

綜上所述,我們探討了所提出的方案和其他基準方案在各種參數下的性能差異,以及提出的用戶選擇演算法與隨機選擇用戶方法的比較。模擬結果顯示,所提出的混合波束成型設計和用戶選擇方案均可以實現非常有競爭力且優於全數位設計的性能。
摘要(英) With breakthroughs in RF components and antenna technology, low earth orbit (LEO) satellite communications are gradually becoming prevalent in the era of B5G with its large bandwidth. It has garnered significant attention and is regarded as one of the highly promising technologies in future cellular networks due to its ability to support high data transmission rates and significantly alleviate the issue of high hardware costs. In this paper, a design of hybrid beamforming is proposed for a multi-user (MU) massive multiple-input multiple-output (MIMO) LEO satellite communication system. The objective is to minimize the total system transmission power in the uplink while ensuring a certain quality-of-service (QoS) such as bit/block error rate and data rate for every user. Additionally, a user selection method is introduced, prioritizing users with better channel conditions for information transmission among many users, based on the singular value decomposition results for each user in each subchannel. During transmission, signals at different frequencies may experience different fading, multipath interference, and distortion, resulting in frequency-dependent channel responses. So, orthogonal frequency-division multiplexing (OFDM) is commonly adopted to combat the frequency selectivity of the channel. Furthermore, existing research mainly focuses on the design of hybrid beamforming algorithms, while the problem of how to select modulation and coding schemes during data transmission has hardly not been addressed. In light of this, the algorithm we design provide the most suitable modulation and coding scheme for transmission in user selection configurations and beamforming designs.

In summary, we investigate the performance difference between the proposed scheme and other benchmark schemes under various parameters, and the comparison of the proposed user selection algorithm with random selection of users. Simulation results show that both the proposed hybrid beamforming design and user selection scheme can achieve very competitive and better performance than the fully-digital design.
關鍵字(中) ★ 大規模多輸入多輸出
★ 混合波束成型
★ 用戶選擇
★ 正交分頻多工
★ 低軌道衛星
★ 功率最小化
關鍵字(英) ★ Massive MIMO
★ Hybrid beamforming
★ User Selection
★ OFDM
★ LEO Satellite
★ Power Minimization
論文目次 論文摘要 i
Abstract iii
致謝 v
Contents vi
List of Figures vii
List of Tables viii
Chapter 1. Introduction 1
1.1. LEO Satellite Communicate Systems 1
1.2. Hybrid Beamforming Structure 3
1.3. Array Steering Vector 7
1.4. User Selection in Massive MIMO 8
1.5. Related Work 11
1.6. Contributions 14
1.7. Organization 16
1.8. Notations 17
Chapter 2. System Model 19
2.1. Hybrid Precoding and Combining 19
2.2. Channel Model 22
2.3. Problem Formulation 25
Chapter 3. Proposed Hybrid Beamforming Designs 28
3.1. Digital Beamforming Design 29
3.2. Analog Beamforming Design 35
3.3. Reduce Complexity-Select Sample Analog Beamforming Design 42
3.4. Modified ACMD Hybrid Beamforming 44
3.5. MODCOD Power Allocation Algorithm 45
Chapter 4. Proposed User Selection Scheme 51
Chapter 5. Simulation Results 53
Chapter 6. Conclusion 61
References 63
參考文獻 [1] J. Farserotu and R. Prasad, "A survey of future broadband multimedia satellite systems, issues and trends," in IEEE Communications Magazine., vol. 38, no. 6, pp. 128-133, June 2000.
[2] J. Chu and X. Chen, ‘‘Robust design for integrated satellite–terrestrial Internet of Things,’’ IEEE Internet Things J., vol. 8, no. 11, pp. 9072–9083, Jun. 2021.
[3] N. Gupta and S. Bitragunta, ‘‘Green satellite communication link design, optimization, and performance analysis,’’ in Proc. IEEE 7th Uttar Pradesh Sect. Int. Conf. Electr., Electron. Comput. Eng. (UPCON), Nov. 2020, pp. 1–5.
[4] Y. Seyedi and S. M. Safavi, “On the Analysis of Random Coverage Time in Mobile LEO Satellite Communications,” IEEE Commun. Lett., vol.16, no. 5, pp. 612-615, 2012.
[5] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., ‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[6] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Commun. Mag., vol. 52, no. 12, pp. 110–121, Dec. 2014.
[7] F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors, and F. Tufvesson, ‘‘Scaling up MIMO: Opportunities and challenges with very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[8] S. Kutty and D. Sen, “Beamforming for millimeter wave communications: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 949–973, 2nd Quart., 2016.
[9] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave MIMO systems,” in Proc. 2012 IEEE International Conf. Commun., pp. 3724–3729.
[10] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
[11] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, pp. 186-194, Jan. 2015.
[12] O. El Ayach, R. W. Heath, Jr., S. Rajagopal, and Z. Pi, “Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013, pp. 3476–3480.
[13] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, ‘‘A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060-3097, Jun. 2018.
[14] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment,” submitted to IEEE Transactions on Wireless Communications, 2015.
[15] J. Song, J. Choi, S. G. Larew, D. J. Love, T. A. Thomas, and A. Ghosh, “Adaptive millimeter wave beam alignment for dual-polarized MIMO systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6283–6296, Nov. 2015.
[16] J. Song, S. G. Larew, D. J. Love, T. A. Thomas, and A. Ghosh, “Millimeter wave beam-alignment for dual-polarized outdoor MIMO systems,” in Proceedings of IEEE Global Telecommunications Conference Workshops, Dec. 2013.
[17] Y. H. Nam, B. L. Ng, K. Sayana, Y. Li, J. Zhang, Y. Kim, and J. Lee, “Full-dimension MIMO for next generation cellular technology,” IEEE Communications Magazine, vol. 51, no. 6, pp. 172–179, Jun. 2013.
[18] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp.528-541, Mar. 2006.
[19] R. S. Chaves, M. V. S. Lima, E. Cetin and W. A. Martins, “User Selection for Massive MIMO under Line-of-Sight Propagation,” IEEE Open Journal of the Commun. Society., vol. 3, pp. 867-887, May. 2022.
[20] S. S. Yılmaz and B. Özbek, “Compressive Sensing based Low Complexity User Selection for Massive MIMO Systems,” 2020 IEEE 91st Vehicular Technology Conference, Jun. 2020.
[21] H. Chen and C. Qi, “User Grouping for Sum-Rate Maximization in Multiuser Multibeam Satellite Communications,” 2019 IEEE International Conference on Communications (ICC), Jul. 2019.
[22] A. Guidotti, A. Vanelli-Coralli, G. Taricco and G. Montorsi, “User Clustering for Multicast Precoding in Multi-Beam Satellite Systems,” Jun. 2017, [online] Available: https://arxiv.org/abs/1706.09482.
[23] D. Christopoulos, S. Chatzinotas and B. Ottersten, “User Scheduling for Coordinated Dual Satellite Systems with Linear Precoding,” 2013 IEEE International Conference on Communications (ICC), Nov. 2013.
[24] S. Chen, S. Sun and S. Kang, “System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in B5G and 6G,” China Communications, vol. 17, no. 12, pp. 156-171, Dec. 2020.
[25] F. A. P. de Figueiredo, “An Overview of Massive MIMO for 5G and 6G,” IEEE Lat. Am. Trans., vol. 20, no. 6, pp. 931-940, Apr. 2022.
[26] J. Lorincz and D. Begusic, “Adaptive beamforming structure with STBC for IEEE 802.11n WLAN systems,” 2008 16th International Conference on Software, Telecommunications and Computer Networks, Nov. 2008.
[27] O. Kodheli, A. Guidotti and A. Vanelli-Coralli, “Integration of Satellites in 5G through LEO Constellations,” GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Jan. 2017.
[28] L. You, K.-X. Li, J. Wang, X. Gao, X.-G. Xia and B. Ottersten, “Massive MIMO Transmission for LEO Satellite Communications,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1851-1865, Jun. 2020.
[29] J. Palacios, N. Gonzalez-Prelcic, C. Mosquera, T. Shimizu and W. Chang-Heng, “A hybrid beamforming design for massive MIMO LEO satellite communications,” Front. Space Technol. 2:696464 (2021), [online] Available: https://arxiv.org/abs/2104.11158.
[30] X. Qiang, L. You, L. Ke-Xin, C. G. Tsinos, W. Wang, X. Gao and B. Ottersten, “Hybrid A/D Precoding for Downlink Massive MIMO in LEO Satellite Communications,” 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Jul. 2021.
[31] Y. Liu, C. Li, J. Li and L. Feng, “Robust Energy-Efficient Hybrid Beamforming Design for Massive MIMO LEO Satellite Communication Systems,” IEEE Access, pp. 63085-63099, Jun. 2022.
[32] L. Gao, J. Ma, L. You, C. Pan, W. Wang and X. Gao, “Robust Energy-Efficient Multigroup Multicast Beamforming for Multi-Beam Satellite Communications,” ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Jul. 2020.
[33] J. Chu, X. Chen, C. Zhong and Z. Zhang, “Robust Design for NOMA-Based Multibeam LEO Satellite Internet of Things,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1959-1970, Aug. 2020.
[34] W. Ni and X. Dong, "Hybrid Block Diagonalization for Massive Multiuser MIMO Systems," in IEEE Transactions on Communications, vol. 64, no. 1, pp. 201-211, Jan. 2016.
[35] C. Hu, J. Liu, X. Liao, Y. Liu and J. Wang, "A Novel Equivalent Baseband Channel of Hybrid Beamforming in Massive Multiuser MIMO Systems," in IEEE Communications Letters, vol. 22, no. 4, pp. 764-767, April 2018.
[36] S. Chen, Q. Gao, R. Chen, H. Li, S. Sun and Z. Liu, “A CSI acquisition approach for mmWave massive MIMO,” China Communications, vol. 16, no. 9, pp. 1-14, Sep. 2019.
[37] K. X. Li, J. Wang, X. Gao, C. G. Tsinos and B. Ottersten, “Uplink Transmit Design for Massive MIMO LEO Satellite Communications.” [online] Available: https://doi.org/10.48550/arXiv.2201.12940.
[38] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, USA: John Wiley & Sons, 2016.
[39] R. Shafin, L. Liu, Y. Li, A. Wang, and J. Zhang, “Angle and delay estimation for 3-D massive MIMO/FD-MIMO systems based on parametric channel modeling,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5370–5383, Aug. 2017.
[40] A. Alkhateeb, M. Jianhua, N. González-Prelcic, and R. W. Heath Jr., “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.
[41] Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262, Jun. 2016.
[42] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, L. Castedo, and R. W Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, May 2018.
[43] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," in IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004.
[44] B. Farhang-Boroujeny, Q. Spencer, and L. Swindlehurst, “Layering techniques for space-time communications in multi-user networks,” in Proc. IEEE Veh. Technol. Conf., vol. 2, pp. 1339–1342, Oct. 2003.
[45] L. Arévalo, R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Uplink block diagonalization for massive MIMO-OFDM systems with distributed antennas,” in Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP), pp. 889-892, Dec. 2015.
[46] D. Zhang Y. Wang X. Li and W. Xiang ‘‘Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems ’’ IET Commun., vol. 13 no. 11 pp. 1557–1564 Jul. 2019.
[47] X. Wu D. Liu and F. Yin “Hybrid beamforming for multi-user massive MIMO systems ” IEEE Trans. Commun. vol. 66 no. 9 pp. 3879–3891 Sep. 2018.
[48] J. Du W. Xu C. Zhao and L. Vandendorpe “Weighted spectral efficiency optimization for hybrid beamforming in multiuser massive MIMO-OFDM systems ” IEEE Trans. Veh. Technol. vol. 68 no. 10 pp. 9698–9712 Oct. 2019.
[49] ETSI EN 302 307 (V1.1.2), “Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, interactive Services, News gathering and other broadband satellite applications,” European Telecommunications Standards Institute (ETSI), June 2006.
[50] M. Smolnikar, T. Javornik, M. Mohorcic and M. Berioli “DVB-S2 Adaptive Coding and Modulation for HAP Communication System ” VTC Spring 2008 - IEEE Vehicular Technology Conference. May. 2008.
[51] B. Y. Chen, Y. F. Chen and S. M. Tseng “Hybrid Beamforming and Data Stream Allocation Algorithms for Power Minimization in Multi-User Massive MIMO-OFDM Systems” IEEE Access, vol. 10, pp. 101898-101912, Sep. 2022.
[52] Y. Liu, C. Li, J. Li and L. Feng “Joint User Scheduling and Hybrid Beamforming Design for Massive MIMO LEO Satellite Multigroup Multicast Communication Systems” [online] Available: https://doi.org/10.3390/s22186858.
[53] Chu, Eunmi; Yoon, Janghyuk; Jung, Bang C. 2019. "A Novel Link-to-System Mapping Technique Based on Machine Learning for 5G/IoT Wireless Networks" Sensors 19, no. 5: 1196.
[54] S. ten Brink, G. Kramer and A. Ashikhmin, "Design of low-density parity-check codes for modulation and detection," in IEEE Transactions on Communications, vol. 52, no. 4, pp. 670-678, April 2004.
[55] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 16)
[56] D. Breynaert, M. d’Oreye de Lantremange, “Analysis of the Bandwidth Efficiency of DVB-S2 in a Typical Data Distribution Network”, in Proc. of CCBN2005, Beijing, March 21-23, 2005.
[57] L. L. Joiner and J. J. Komo, “Decoding binary BCH codes”, in Proceedings IEEE Southeastcon ′95. Visualize the Future, March 26-29, 1995.
[58] S. Luyi, F. Jinyi and Y. Xiaohua, “Forward Error Correction” , in 2012 Fourth International Conference on Computational and Information Sciences, August 17-19, 2012.
[59] Wideband spatial channel model in an urban cellular environments at 28 GHz ” in Proc. Eur. Conf. Antennas Propag. (EuCAP) Apr. 2015 pp. 1–5.
[60] H. An M. Mohaisen D. Han and K. Chang “Coordinated transmit and receive processing with adaptive multi-stream selection ” in Proc. IEEE Int. Conf. Communications, Networking, and Mobile Computing (WiCOM) Sep. 2010 pp. 1–5.
[61] Q. H. Spencer A. L. Swindlehurst and M. Haardt “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels ” IEEE Trans. Signal Process. vol. 52 no. 2 pp. 461-471 Feb. 2004.
[62] R. L. Choi M. T. Lvrlac R. D. Murch and J. A. Nossek “Joint transmit and receive multi-user MIMO decomposition approach for the downlink of multi-user MIMO systems ” in Proc. IEEE Veh. Technol. Conf. Oct. 2003 pp. 409-413.
[63] M.S. thesis, and Hsin-Hsiang Tseng, “Hybrid Beamforming Design with Dynamic Streams Assignment for mmWave Multi-User Massive MIMO-OFDM Systems”, M.S. thesis, Dept. Commun. Eng., National Central Univ., Zhongli, Taoyuan, Taiwan, 2022.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明