博碩士論文 110523043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.137.192.3
姓名 陳弘麒(Hung-Chi Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 適用於窄頻物聯網之窄頻實體隨機存取通道 檢測與估計技術
(Detection of Narrowband Physical Random Access Channel in Narrowband Internet of Things Network)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 窄頻物聯網
(Narrowband Internet-of-Things, NB-IoT) 為第三代合作夥伴計畫 (3rd Generation Partnership Project, 3GPP)在低功率廣域網路 (Low-Power Wide-Area Network, LPWAN)訂定的標準,是一種新型蜂巢式網路技術 (cellular network) 亦為 低功耗廣域網
路技術種類之一,能夠滿足用戶與企業相互連接的需求以及擁有更遠的行動設備服務範
圍,具有的優勢包含可以大量連接物聯網裝置、覆蓋範圍廣泛、低功耗,可以延長電池
使用壽命、成本低廉等並能支援各式不同的應用,例如用於智慧城市、環境監測等。
本論文研究了一種的技術,用於有效檢測通過窄頻物聯網實體隨機存取通道
(Physical Random Access Channels, NPRACH)傳輸的重疊前導序列。由於通道的準靜態性
在幾個符元期間保持本地相位一致性,因此本文採用符號級匹配濾波器 (Symbol-level Matched Filter, SLMF) 以有效降低帶外雜訊和干擾,而為了減少由不同載波頻率偏移
(Carrier Frequency Offsets, CFOs) 引起的載波間干擾 (Intercarrier Interference, ICI),本文
研究了一種基於干擾重建和消除 (Interference Regeneration and Cancellation, IRnC) 的前
向錯誤糾正方法來有效降低遺漏 機 率 通過將量化的正規化 CFO (Normalized CFO, NCFO) 估計 值反饋給相應的 UE 並減少 CFO,最後模擬驗證了理論分析並展示了所提
出技術實現低誤報和遺漏 機 率 的能力。
摘要(英) Narrowband Internet-of-Things (NB-IoT) is defined by the 3rd Generation Partnership Project (3GPP) in Low-Power Wide-Area Network (LPWAN). NB-IoT can meet the connectivity needs of users and businesses, providing extended service coverage for mobile devices. Its advantages include the ability to connect a large number of IoT devices, wide coverage, low power consumption, extended battery life, and cost-effectiveness. It supports various applications, such as smart cities and environmental monitoring.
This thesis explores a novel technique for effectively detecting overlapping preamble sequences transmitted through the Narrowband IoT Physical Random Access Channels (NPRACH). Due to the quasi-static nature of the channel, which maintains local phase coherence over multiple symbol periods, the thesis adopts a symbol-level matched filter (SLMF) to efficiently reduce out-of-band noise and interference. In order to mitigate intercarrier interference (ICI) caused by carrier frequency offsets (CFOs) from different carriers, the paper investigates a forward error correction method based on Interference Regeneration and Cancellation (IRnC) to effectively reduce the probability of missing detections. By feeding back quantized normalized CFO (NCFO) estimates to the corresponding user equipment (UE) and reducing CFO, the proposed technique demonstrates the capability to achieve low false alarm and missing detection probabilities, as validated through theoretical analysis and simulation.
關鍵字(中) ★ 窄頻物聯網
★ 窄頻實體隨機存取通道
★ 單音跳頻
★ 載波頻率偏移
關鍵字(英)
論文目次 摘要
i
Abstract ii
誌謝
iii
目錄
iv
圖目錄
vi
表目錄
vii
第一章
緒論 1
1.1 研究背景 1
1.2 研究 動機 3
1.3 論文大綱 4
第二章
窄頻物理隨機存取通道與前導碼 5
2.1 同步讀取資料 與隨機存取程序 5
2.2 前導碼 7
2.3 單音跳頻前導碼原理 8
2.4 窄頻物理隨存取通道 (NPRACH) 9
第三章
訊號模型 13
3.1 基頻訊號 13
3.2 符號級匹配濾波器 (SLMF) 14
第四章
檢測方法 16
4.1 奈曼 -皮爾森檢測 16
4.2 NPRACH檢測 18
4.3 NCFO估計 22
第五章
模擬結果與討論 23
5.1 決策閾值計算 23
5.2 遺漏機率與誤報機率遺漏機率與誤報機率 25
第六章 結論結論 31
參考文獻 32
參考文獻 [1] W. S. Jeon, S. B. Seo, and D. G. Jeong, “Effective frequency hopping pattern for ToA estimation,” IEEE Trans. Veh. Technol., vol. 67, pp. 10 150–10 154, Oct. 2018.
[2] X. Lin, A. Adhikary, and Y.-P. E. Wang, “Random access preamble design and detection for 3GPP narrowband IoT systems,” IEEE Wirel. Commun. Lett., vol. 5, pp. 640–643, Dec. 2016.
[3] S. Kay, Fundamentals of Statistical Signal Processing Vol. 2 Detection Theory, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[4] B. Dulek and S. Gezici, "Optimal signaling and detector design for power constrained on-off keying systems in Neyman-Pearson framework," in Proc. IEEE Statistical Signal Process. Workshop (SSP), June 2011, pp. 93-96.
[5] V. Bhatia and B. Mulgrew, "Non-parametric likelihood based channel estimator for Gaussian mixture noise," Signal Processing, vol. 87, pp. 2569-2586, Nov. 2007.
[6] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-Hill, 2008.
[7] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Physical Channels and Modulation,V. 13.7.0, 3GPP Spec. TS36.211, Sep. 2017.
[8] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN);Multiplexing and Channel Coding,V. 13.7.0, 3GPP Spec. TS36.212, Sep. 2017.
33
[9] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Physical Layer Procedures, V.13.7.0, 3GPP Spec. TS36.213, Sep. 2017.
[10] J.-K. Hwang, C.-F. Li, and C. Ma, "Efficient detection and synchronization of superimposed NB-IoT NPRACH preambles," IEEE Internet Things J., vol. 6, no. 1, pp. 1173-1182, Feb. 2019.
[11] H. Chougrani, S. Kisseleff, and S. Chatzinotas, “Efficient preamble detection and time-of-arrival estimation for single-tone frequency hopping random access in NB-IoT,” IEEE Internet of Things Journal, vol. 8, no. 9, pp. 7437-7449, May. 2021.
[12] 3GPP, TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Physical Channels and Modulation (Release 13),” 2016.
[13] V. Savaux and Y. Louet, "PAPR analysis as a ratio of two random variables:Application to multicarrier systems with low subcarriers number," IEEE Trans. Commun., vol. 66, no. 11, pp. 5732-5739, Nov. 2018.
[14] 3GPP, TS 36.331, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 14),” 2017
[15] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[16] W. Ayoub,A. E. Samhat, F. Nouvel, M. Mroue, and J. C. Prévotet, "Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility," IEEE Communications Surveys & Tutorials, vol. 21, pp. 1561–1581, Secondquarter 2019.
[17] J.-C. Lin, “A modified PN code tracking loop for direct-sequence spread-spectrum communication over arbitrarily correlated multipath fading
34
channels,” IEEE J. Select. Areas Commun., vol. 19, pp. 2381–2395, Dec. 2001.
[18] Q. Wu, P. Wu,W.Wen, T. Yang, and M. Xia, "An efficient NPRACH receiver design for NB-IoT systems," IEEE Internet Thing J., vol. 7, no. 10, pp. 10418-10426, Oct. 2020.
[19] R. Barbau, V. Deslandes, G. Jakllar and A. -L. Beylot, "Performance evaluation of different 5G NB-IoT satellite systems," in International Communications Satellite Systems Conference (ICSSC 2021) , 2021
[20] M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, Y.A. Al-Gumaei and M. Khalid, "A Reinforcement Learning-based Assignment Scheme for EVs to Charging Stations", 2022 IEEE 95th Vehicular Technology Conference, 2022.
指導教授 林嘉慶 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明