博碩士論文 110523067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.21.104.109
姓名 李俊孝(Chun-Hsiao Lee)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 使用部分連結陣列天線之毫米波通訊於智能反射 面板的錯誤率性能提升
(Improved BER performance of RIS using Partial-connected for mmWave communication)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 相比於前面幾代的通訊系統,5G 對通訊系統提出更高的要求、更快的傳輸速度、更低的資料延遲以及更好的效率。這些要求都是得益於對毫米波 (Millimeter wave, mmWave) 的應用與開發。但在另一方面,巨大的傳輸損耗使通訊品質大幅下降。波束成型 (Beamforming) 為克服上述影響的關鍵技術。在混合波束成形架構下,射頻鏈路的數量決定了成本的高低,射頻鏈路透過相移器連接到每一支天線上,導致提高了硬體設計上的複雜度,所以部分連結的結構就被提出,在射頻鏈路只連結到部分天線上,並沒有完全連接到所有天線上,這個架構就被稱作混合波束部分連結架構,這對昂貴的毫米波硬體來說,它在設計上的複雜度有所降低,且更具實際上的應用價值。可由於射頻鏈路沒有連接到所有天線上,這導致頻譜效率變低,從而資料傳輸的準確率下降,這是硬體上的限制。在本文中,我們採用多路徑三維通道(multi-path three-dimensional (3D) channel) 為通道環境,並提出了結合部分連結的波束成型演算法與幾何平均分解 (GMD) 的算法,透過演算法得出它的類比預編碼器與結合器,再使用幾何平均分解去優化數位預編碼器與結合器的部分,它可以避免複雜的比特分配。與傳統的基於 SVD 的混合預編碼不同,它可以將毫米波大規模 MIMO 通道轉換為具有相同增益的子通道,因此不再需要額外的功率分配,使得調變和編碼的設計複雜度降低,讓部分連結系統可以用低複雜度實現更好的錯誤率 (BER) 性能,此外我們一樣是討論錯誤率得情況下,將部分連結天線陣列優化方式,套用到智能反射板上,看是否能夠跟天線陣列的訊號處理一樣有同樣的
效果,最後利用模擬結果進行性能分析與討論。
摘要(英) Compared with previous generations of communication systems, 5G puts forward higher requirements, faster speed, lower delay and better efficiency for communication systems. These requirements are all benefited from the application and development of Millimeter wave. But on the other hand, the huge transmission loss makes the communication quality drop significantly. Beamforming is a key technology to overcome the above-mentioned effects.In the hybrid beamforming architecture, the number of Radio Frequency chain determines the cost. The Radio Frequency chain are connected to each antenna through a phase shifter, which increases the complexity of hardware design, so the structure of partial connection is proposed that when the Radio Frequency chain is only connected to some antennas, but not fully connected
to all antennas, this architecture is called hybrid beamforming partial connection architecture. However, since the Radio Frequency chain is not connected to all antennas, the spectrum efficiency becomes low, and the accuracy of data transmission decreases. This is a hardware limitation. In this paper, we use a multi-path three-dimensional (3D) channel as the channel environment, and propose an algorithm combining partially connected beamforming algorithm and geometric mean decomposition(GMD), through the algorithm get its analog precoder and combiner, and then use GMD to optimize the part of the digital precoder and combiner, it can avoid complex bit allocation. Different from the traditional SVD-based hybrid precoding, it can convert the mmWave massive MIMO channel into the same sub-channel, so no additional allocation is needed, the design complexity of modulation and coding is reduced, and the partial connection system’s BER performance can be achieved with low complexity. In addition, we are also discussing the BER, and apply partial connected array optimization method connected to the RIS to see if it can have the same effect as the signal processing of the antenna array, and finally the simulation results are used for performance analysis and discussion.
關鍵字(中) ★ 多輸入多輸出正交分頻多工
★ 混和波束成型
★ 智能反射面板
★ 部分連結
★ 幾何平均分解
★ 錯誤率
關鍵字(英) ★ MIMO-OFDM
★ Hybrid beamforming
★ RIS
★ Partial-connected
★ geometric mean decomposition
★ Bit error rate
論文目次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
致謝詞 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第 1 章序論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 毫米波通訊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 正交分頻多工 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 多輸入多輸出天線架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 混合波束成型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 全連接與部分連接混合波束成型架構 . . . . . . . . . . . . . . . . . . . . 8
1.7 智能反射板 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 章節架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
第 2 章系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 傳輸系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 通道模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 智能反射板 (RIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
第 3 章波束成型設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 正交匹配追蹤 (OMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 混和預編碼器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 混和結合器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 交替相位最小化算法 (PE-AltMin) . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 數位基頻預編碼器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 混和預編碼器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Joint-SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
第 4 章幾何平均分解 (GMD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 基於 SVD 的 GMD 算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 波束成型演算法與幾何平均分解的結合 . . . . . . . . . . . . . . . . . . 52
第 5 章系統模擬與結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 系統下模擬結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
第 6 章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
參考文獻 [1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile
broadband systems,” IEEE Communications Magazine, vol. 49,
no. 6, pp. 101–107, 2011.
[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter
wave mobile communications for 5g cellular: It will work!” IEEE
Access, vol. 1, pp. 335–349, 2013.
[3] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul
and access in small cell networks,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.
[4] “Ieee draft amendment to ieee standard for information technology–
telecommunications and information exchange between systems–
local and metropolitan area networks–specific requirements–part
15.3: Wireless medium access control (mac) and physical layer
(phy) specifications for high rate wireless personal area networks
(wpans): Amendment 2: Millimeter-wave based alternative physical layer extension,” IEEE Unapproved Draft Std P802.15.3c/D08,
Mar 2009, 2009.
[5] “Ieee standard for information technology–telecommunications and
information exchange between systems–local and metropolitan area
networks–specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 3: Enhancements for very high throughput in the 60 ghz band,”
IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012,
as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa2012), pp. 1–628, 2012.
[6] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim,
E. De Poorter, and I. Moerman, “A survey on hybrid beamforming techniques in 5g: Architecture and system model perspectives,”
IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3060–
3097, 2018.
[7] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave mimo systems,”
IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp.
1499–1513, 2014.
[8] T. Xie, L. Dai, X. Gao, M. Z. Shakir, and J. Li, “Geometric mean
decomposition based hybrid precoding for millimeter-wave massive
mimo,” China Communications, vol. 15, no. 5, pp. 229–238, 2018.
[9] B. Liu, W. Tan, H. Hu, and H. Zhu, “Hybrid beamforming for
mmwave mimo-ofdm system with beam squint,” in 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), 2018, pp. 1422–1426.
[10] A. Deshmukh and S. K. Bodhe, “Characterization of radio propagation at 60 ghz channel,” in 2009 First Asian Himalayas International Conference on Internet, 2009, pp. 1–8.
[11] H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-ghz indoor channels,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 3, pp. 620–630, 2002.
[12] A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE
Transactions on Signal Processing, vol. 50, no. 10, pp. 2563–2579,
2002.
[13] V. Raghavan and A. M. Sayeed, “Sublinear capacity scaling laws for
sparse mimo channels,” IEEE Transactions on Information Theory,
vol. 57, no. 1, pp. 345–364, 2011.
[14] H. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, ser. Detection, Estimation, and
Modulation Theory. Wiley, 2002.
[15] J. Lee and Y. H. Lee, “Af relaying for millimeter wave communication systems with hybrid rf/baseband mimo processing,” in 2014
IEEE International Conference on Communications (ICC), 2014,
pp. 5838–5842.
[16] K. Ying, Z. Gao, S. Lyu, Y. Wu, H. Wang, and M.-S. Alouini,
“Gmd-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive mimo,” IEEE Access, vol. 8, pp. 19 530–19 539, 2020.
[17] H. Li, M. Li, Q. Liu, and A. L. Swindlehurst, “Dynamic hybrid beamforming with low-resolution pss for wideband mmwave
mimo-ofdm systems,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 9, pp. 2168–2181, 2020.
[18] J. Tropp, I. Dhillon, R. Heath, and T. Strohmer, “Designing structured tight frames via an alternating projection method,” IEEE
Transactions on Information Theory, vol. 51, no. 1, pp. 188–209,
2005.
[19] A. S. Lewis and J. Malick, “Alternating projections on manifolds,”
Mathematics of Operations Research, vol. 33, no. 1, pp. 216–234,
2008. [Online]. Available: http://www.jstor.org/stable/25151848
[20] R. Escalante and M. Raydan, Alternating Projection Methods.
Philadelphia, PA: Society for Industrial and Applied Mathematics,
2011. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/
9781611971941
[21] H. H. Bauschke and J. M. Borwein, “On projection algorithms
for solving convex feasibility problems,” SIAM Review, vol. 38,
no. 3, pp. 367–426, 1996. [Online]. Available: http://www.jstor.
org/stable/2132495
[22] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, ser.
Prentice-Hall information and system sciences series. Prentice
Hall, 2000. [Online]. Available: https://books.google.com.tw/
books?id=zNJFAQAAIAAJ
[23] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave mimo
systems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 10, no. 3, pp. 485–500, 2016.
[24] Z. Zhang, X. Wu, and D. Liu, “Joint precoding and combining design for hybrid beamforming systems with subconnected structure,”
IEEE Systems Journal, vol. 14, no. 1, pp. 184–195, 2020.
[25] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based
rf-baseband codesign for mimo antenna selection,” IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091–4103, 2005.
[26] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient
hybrid analog and digital precoding for mmwave mimo systems
with large antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998–1009, 2016.
[27] S. Payami, M. Ghoraishi, and M. Dianati, “Hybrid beamforming for
large antenna arrays with phase shifter selection,” IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7258–7271,
2016.
[28] Y. Jiang, W. W. Hager, and J. Li, “The geometric mean
decomposition,” Linear Algebra and its Applications, vol. 396, pp.
373–384, 2005. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0024379504004264
[29] Y. Jiang, J. Li, and W. Hager, “Joint transceiver design for mimo
communications using geometric mean decomposition,” IEEE
Transactions on Signal Processing, vol. 53, no. 10, pp. 3791–3803,
2005.
[30] J.-K. Zhang, A. Kavcic, and K. M. Wong, “Equal-diagonal qr decomposition and its application to precoder design for successivecancellation detection,” IEEE Transactions on Information Theory,
vol. 51, no. 1, pp. 154–172, 2005.
[31] Y.-C. Tsai, C.-E. Chen, and C.-H. Yang, “A flexible geometric mean
decomposition processor for mimo communication systems,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64,
no. 2, pp. 446–456, 2017.
[32] C.-E. Chen, Y.-C. Tsai, and C.-H. Yang, “An iterative geometric mean decomposition algorithm for mimo communications systems,” IEEE Transactions on Wireless Communications, vol. 14,
no. 1, pp. 343–352, 2015.
指導教授 張大中(Dah-Chung Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明