博碩士論文 109226070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.149.247.166
姓名 陳宥全(You-Quan Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 偏振干涉技術應用於生物感測器之研究
(Research on the Application of Polarization Interferometry Technology in Biosensors 研 究 生 :陳 宥 全 指導教授 :郭 倩 丞 博士 中)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-27以後開放)
摘要(中) 光學生物檢測技術在生物、醫學領域方面受到越來越多的重視與廣泛的應用,能夠深入觀察分子與物質之間的交互作用並進行數據分析。本論文初始以偏振式Linnik動態干涉儀量測437.6nm階高的標準片,平均值為437.53nm,誤差為-0.017%。量測樣品厚度79.96nm的金薄膜,平均值為80.61nm,其誤差0.82%,由此可判定量測系統穩定。研究厚度79.96nm的金薄膜在不同濃度下的甘油水溶液中的階高變化。
以反射相位會因為折射率的改變,使得原始量測到的金膜厚度會隨著濃度變化而改變。後來因參考臂的補償片只能補償到樣品臂所產生的像平面平移,沒辦法補足樣品臂中的玻璃光程以及更換樣品介質的光程,因此後續系統會轉變為Twyman-Green 干涉儀架構,最終量測的靈敏度為84.226 nm/RIU,檢測極限為6.248E-3 RIU。後續依此系統去做預測,最終的靈敏度可達9E+3nm/RIU,檢測極限可達到6.366E-5 RIU,最後還有討論一些對研究架構、製具規格和提高靈敏度與檢測極限的探討與改良。
摘要(英) The optical biometric detection technology is receiving increasing attention and finding widespread application in the fields of biology and medicine. It enables a deeper observation of the interactions between molecules and substances, along with the ability to perform data analysis. This paper initially employed a polarized Linnik dynamic interferometer to measure a standard wafer with a step height of 437.6 nm. The measured average height was 437.53 nm, with a deviation of -0.017%. For the measurement of a gold thin film with a thickness of 79.96 nm, the average thickness was 80.61 nm, with a deviation of 0.82%. This confirms the stability of the measurement system.
The study examined the step height variations of a 79.96 nm thick gold film in glycerol-water solutions of different concentrations. Due to changes in refractive index, the reflection phase caused the originally measured thickness of the gold film to vary with concentration. Later, as the compensatory piece in the reference arm only compensated for the lateral shift produced by the sample arm and could not account for the glass optical path within the sample arm or changes in optical path due to altering the sample medium, the subsequent system transitioned to a Twyman-Green interferometer architecture. The final measured sensitivity of the system was 84.226 nm/RIU, with a detection limit of 6.248E-3 RIU. Following this system, predictions were made, indicating a potential final sensitivity of 9E+3 nm/RIU and a detection limit of 6.366E-5 RIU. Finally, there was a discussion of improvements related to research structure, tool specifications, and enhancing sensitivity and detection limits.
關鍵字(中) ★ 動態干涉儀
★ 偏振干涉技術
★ 生物感測器
關鍵字(英) ★ dynamic interferometer
★ Polarization Interferometry
★ Biosensors
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1前言 1
1-1-1相移式干涉技術 2
1-1-2 Michelson干涉儀 3
1-1-3分子生物檢測技術 6
1-2文獻回顧 8
1-3研究動機 9
1-4 論文架構 9
第二章 理論 10
2-1干涉理論 10
2-1-1相移式干涉儀 11
2-1-2偏振式動態干涉儀 14
第三章 實驗架構與研究方法 17
3-1研究架構 17
3-2研究方法 18
第四章 結果與討論 22
4-1系統穩定性與強度校正 22
4-2動態干涉儀校正 26
4-3實驗結果 29
4-4樣品製具的影響 33
4-5未來工作 34
第五章 結論 39
參考文獻 41
參考文獻 [1] Scognamiglio, V., Arduini, F., Palleschi, G., & Rea, G. “Biosensing technology for sustainable food safety.” TrAC Trends in Analytical Chemistry, 62, 1–10. (2014).
[2] Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., & Zhang, W. “Progress of new label-free techniques for biosensors: a review.” Critical Reviews in Biotechnology, 1–17. (2015).
[3] Huang, Peisen S; Zhang, Song; Harding, Kevin G. “A fast three-step phase-shifting algorithm”, SPIE Optics East (2005)
[4] I. Yamaguchi, and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997)
[5] Jiri Novak “Five-step phase-shifting algorithms with unknown values of phase shift.”,114(2), 63–68. (2003)
[6] Liu, Cheng-Yang; Yen, Tzu-Ping “Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging” Optics & Laser Technology, 79(), 115–123. (2016)
[7] Ushakov, Nikolai; Liokumovich, Leonid “Measurement of dynamic interferometer baseline perturbations by means of wavelength-scanning interferometry”. Optical Engineering, 53(11), 114103,(2014)
[8] Millerd, James E.; Brock, Neal J.; Hayes, John B.; North-Morris, Michael B.; Novak, Matt; Wyant, James C.; Creath, Katherine; Schmit, Joanna. SPIE Proceedings “Techniques and Analysis “Pixelated phase-mask dynamic interferometer”, 5531(), 304–314.
[9] Malacara, D. “Twyman–Green Interferometer”. Optical Shop Testing. pp. 46–96 (2007)
[10] Menzies, A. C.Frank Twyman. 1876-1959" “Biographical Memoirs of Fellows of the Royal Society. Royal Society publishing”. 5: 269–279. (1960)
[11] Gan, S. D., & Patel, K. R. “Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay.” Journal of Investigative Dermatology, 133(9), 1–3. (2013)
[12] Zhang, Y., & Noji, H.. “Digital Bioassays: Theory, Applications, and Perspectives. Analytical Chemistry,” 89(1), 92–101. (2016)
[13] Lambeck, Paul V. “Integrated optical sensors for the chemical domain. Measurement Science and Technology” 17(8), R93–R116. (2006)
[14] Gonzalez-Guerrero, Ana Belén; Maldonado, Jesus; Herranz, Sonia; Lechuga, Laura Maria “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics”. (2016).
[15] A. Ymeti; J.S. Kanger; J. Greve; G.A.J. Besselink; P.V. Lambeck; R. Wijn; R.G. Heideman. “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor.” , 20(7), 1417–1421. (2005)
[16] J. Escorihuela, M. Á. González-Martínez, J. L. López-Paz, R. Puchades, Á. Maquieira and D. Gimenez-Romero, Chemical Reviews, 115, 265-294. (2015)
[17] Daniel Malacara , “Optical Shop Testing, Third Edition,” Wiley-Interscience A John Wiley & Sons, Inc. ,(2007)
[18] Neal Brock, John Hayes, Brad Kimbrough, James Millerd, Michael North-Morris Matt Novak and James C. Wyant, “Dynamic Interferometry “,SPIE Vol. 5875 SPIE, Bellingham, WA, (2005)
[19] D. Martens and P. Bienstman, "Study on the limit of detection in MZI-based biosensor systems," Sci.Rep.9, 5767 (2019).
[20] Zhang, Yu; Tian, Xiaobo; Liang, Rongguang, “Fringe-print-through error analysis and correction in snapshot phase-shifting interference microscope”. Optics Express, 25(22), 26554 (2017).
[21] P. Mouroulis, and J. Macdonald, ‘‘Geometrical Optics and Optical Design’’, Oxford University Press, (1997).
[22] A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, ‘‘Three-dimensional cellular-level imaging using full-field optical coherence tomography’’, Phys. Med. Biol., Vol 49, pp. 1227-1234, (2004).
[23] Jinyu Wang, Jean-François Léger, Jonas Binding, A. C. Boccara, S. Gigan, and L. Bourdieu, ‘‘Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer’’, Biomedical Optics Express, Vol 3, pp. 2510-2525, (2012).
[24] W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, ‘‘Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera’’, Optics Express, Vol 14, pp. 726- 735, (2006).
[25] Sander Konijnenberg, Aurèle J.L. Adam, & H. Paul Urbach, BSc Optics, libretexts physics, 161, (2021)
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明