博碩士論文 110226099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.128.78.30
姓名 賴威廷(Wei-Ting Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合PCA與雙光子超光譜開發木材分析技術
(Combining PCA and two-photon hyperspectral to develop wood analysis technology)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-24以後開放)
摘要(中) 過去對於木材的分析方式可以是觀察其外觀特徵,例如顏色、紋理和氣味等,進而判定木材的種類與品質。然而,這種分析方式的局限性在於無法精確地鑒定木材的化學成分和結構特性,因此無法滿足現代工業對於木材品質控制和加工需求的要求。現今光譜技術已成為主要的木材分析方法,例如紅外光光譜、拉曼光譜和螢光光譜等,能準確判定木材的化學成分、結構和特性等訊息。現代科技的發展也推動了木材分析的自動化和智能化,有助於提高分析效率和精確度,減少人為因素的影響。
本研究使用雙光子超光譜顯微術來做研究工具,分別對三種現代軟木以及九種現代硬木的雙光子螢光光譜進行分析,結合線性分離、PCA和KNN等技術進行辨認模型的建立,探討雙光子螢光光譜區分軟木與硬木的可能性。為了得知過去的製琴技術,我們分別透過鹼處理以及熱處理過後的現代雲杉樣本對歐洲提琴與中國古琴進行比較,藉由此方法,我們可以深入研究過去的製琴技術,進一步加深對於古琴製作的理解。
木材中的纖維結構是管胞細胞壁的主要成分,這些纖維束在細胞壁內依照不同生長條件產生差異,藉由記錄管胞細胞壁中纖維素排列方向有助於我們理解細胞壁的結構,我們藉由雙光子超光譜顯微術拍攝木材纖維素二倍頻(SHG),研究木材纖維素的分佈以及排列方向。
摘要(英) In the past, the way to analyze wood can be to observe its appearance characteristics, such as color, texture and smell, etc., and then determine the type and quality of wood. However, the limitation of this analysis method is that it cannot accurately identify the chemical composition and structural properties of wood, so it cannot meet the requirements of modern industry for wood quality control and processing needs. Nowadays, spectroscopic techniques have become the main wood analysis methods, such as infrared spectroscopy, Raman spectroscopy and fluorescence spectroscopy, etc., which can accurately determine the chemical composition, structure and characteristics of wood. The development of modern technology has also promoted the automation and intelligence of wood analysis, which helps to improve the efficiency and accuracy of analysis and reduce the influence of human factors.
This study uses two-photon hyperspectral microscopy as a research tool, analyzes the two-photon fluorescence spectra of three modern softwoods and nine modern hardwoods, and establishes identification models by combining linear separation, PCA and KNN techniques. Possibility of two-photon fluorescence spectroscopy to differentiate softwoods from hardwoods. In order to learn about past violin-making techniques, we compared European violins with Chinese Guqin through alkali-treated and heat-treated modern spruce samples. By this method, we can deeply study past violin-making techniques and further deepen our understanding of Guqin understanding of making.
The fiber structure in wood is the main component of the tracheid cell wall. These fiber bundles are different in the cell wall according to different growth conditions. By recording the cellulose arrangement direction in the tracheid cell wall, we can understand the structure of the cell wall. Photon hyperspectral microscopy photographs wood cellulose double frequency (SHG) to study the distribution and arrangement direction of wood cellulose.
關鍵字(中) ★ 雙光子
★ 主成分分析
★ 二倍頻
★ 超光譜
★ 木材
★ 提琴與古琴
關鍵字(英)
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 木材辨認技術 2
1.2.2 木材纖維束 9
第二章 實驗原理及木材結構 11
2.1 木材結構 11
2.2 木質部細胞壁 13
2.3 木材聚合物 14
2.3.1 木質素 14
2.3.2 纖維素 15
2.3.3 半纖維素 16
2.3.4 分子結構與纖維排列方向 16
2.4 雙光子螢光顯微術 18
2.5 二倍頻 20
2.6 線掃描超光譜 21
2.7 訊號處理 23
2.7.1 線性分離 23
2.7.2 主成分分析 26
2.7.3 k-鄰近演算法 28
第三章 實驗架構和方法 30
3.1 實驗架構 30
3.1.1 雙光子超光譜顯微術 30
3.1.2 旋轉雷射偏振 32
3.2 訊號校正 34
3.2.1 光譜校正 35
3.2.2 sCMOS校正 35
3.3 樣本配置 36
3.3.1 軟硬木分類實驗 37
3.3.2 古琴實驗組 38
3.4 光譜訊號分析方式 39
第四章 實驗結果與討論 41
4.1 雙光子螢光影像 41
4.2 木質素螢光光譜 47
4.3 高斯擬合 51
4.4 線性分離 61
4.5 基底強度PCA 67
4.6 改變雷射偏振激發SHG影像 83
第五章 結論 89
參考文獻 91
參考文獻 [1] 方振豪, "雙光子螢光超光譜顯微術觀察結合演算法於木材之特性研究," in光電科學與工程學系研究所(國立中央大學, 2022)
[2] De Geus, André R., et al. "Amazon wood species classification: a comparison between deep learning and pre-designed features." Wood Science and Technology 55 (2021): 857-872.
[3] Khalid, Marzuki, et al. "Design of an intelligent wood species recognition system." International Journal of Simulation System, Science and Technology 9.3 (2008): 9-19.
[4] Ibrahim, Imanurfatiehah, et al. "Tree species recognition system based on macroscopic image analysis." Wood Science and Technology 51 (2017): 431-444.
[5] Tarrío-Saavedra, Javier, et al. "Functional nonparametric classification of wood species from thermal data." Journal of thermal analysis and calorimetry 104.1 (2011): 87-100.
[6] Yang, Husheng, Ian R. Lewis, and Peter R. Griffiths. "Raman spectrometry and neural networks for the classification of wood types. 2. Kohonen self-organizing maps." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55.14 (1999): 2783-2791.
[7] Lavine, Barry K., et al. "Raman spectroscopy and genetic algorithms for the classification of wood types." Applied Spectroscopy 55.8 (2001): 960-966.
[8] Piuri, Vincenzo, and Fabio Scotti. "Design of an automatic wood types classification system by using fluorescence spectra." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40.3 (2010): 358-366.
[9] Watson, A. J., and H. E. Dadswell. "Influence of fibre morphology on paper properties. 4. Micellar spiral angle." Appita 17.6 (1964): 151-156.
[10] Cave, I. D., and J. C. F. Walker. "Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle." Forest products journal 44.5 (1994): 43.
[11] Verbelen, J‐P., and D. Stickens. "In vivo determination of fibril orientation in plant cell walls with polarization CSLM." Journal of Microscopy 177.1 (1995): 1-6.
[12] Donaldson, Lloyd, and Annette Frankland. "Ultrastructure of iodine treated wood." (2004): 219-225.
[13] Reza, Mehedi, Janne Ruokolainen, and Tapani Vuorinen. "Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy." Planta 240 (2014): 565-573.
[14] Wang, Shennan. Chemical Modification of Nanostructured Wood for Functional Biocomposites. Diss. KTH Royal Institute of Technology, 2021.
[15] Wiedenhoeft, Alex C., and Regis B. Miller. "Structure and function of wood." Handbook of wood chemistry and wood composites (2005): 9-33.
[16] Richter, Christoph. Wood characteristics: description, causes, prevention, impact on use and technological adaptation. Springer, 2014.
[17] Bauch, J., W. Liese, and R. Schultze. "The morphological variability of the bordered pit membranes in gymnosperms." Wood Science and Technology 6.3 (1972): 165-184.
[18] Harada, H., and W. A. Côté. "Cell wall organisation in the pit border region of softwood tracheids." (1967): 81-85.
[19] Comstock, G. L., and W. A. Côté Jr. "Factors affecting permeability and pit aspiration in coniferous sapwood." Wood Science and Technology 2.4 (1968): 279-291.
[20] Murmanis, Lidija, and Irving B. Sachs. "Structure of pit border in Pinus strobus L." Wood and Fiber Science (1969): 7-17.
[21] Richter, Hans Georg, et al., eds. "IAWA list of microscopic features for softwood identification." Iawa Journal 25.1 (2004): 1-70.
[22] Popper, Zoë A. "Evolution and diversity of green plant cell walls." Current opinion in plant biology 11.3 (2008): 286-292.
[23] Braidwood, Luke, Christian Breuer, and Keiko Sugimoto. "My body is a cage: mechanisms and modulation of plant cell growth." New Phytologist 201.2 (2014): 388-402.
[24] Zhang, Xun, Li Li, and Feng Xu. "Chemical characteristics of wood cell wall with an emphasis on ultrastructure: A mini-review." Forests 13.3 (2022): 439.
[25] Rowell, Roger M. Handbook of wood chemistry and wood composites. CRC press, 2005.
[26] Pettersen, Roger C. "The chemical composition of wood." The chemistry of solid wood 207 (1984): 57-126.
[27] Ralph, John, et al. "Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids." Phytochemistry reviews 3 (2004): 29-60.
[28] Maceda, Agustín, and Teresa Terrazas. "Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin." Polymers 14.5 (2022): 961.
[29] Boerjan, Wout, John Ralph, and Marie Baucher. "Lignin biosynthesis." Annual review of plant biology 54.1 (2003): 519-546.
[30] Campbell, Malcolm M., and Ronald R. Sederoff. "Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants)." Plant physiology 110.1 (1996): 3.
[31] Sharma, Swati, and Ashok Kumar, eds. Lignin: biosynthesis and transformation for industrial applications. Springer Nature, 2020.
[32] Piuri, Vincenzo, and Fabio Scotti. "Design of an automatic wood types classification system by using fluorescence spectra." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40.3 (2010): 358-366.
[33] Hinterstoisser, Barbara, and Lennart Salmén. "Application of dynamic 2D FTIR to cellulose." Vibrational Spectroscopy 22.1-2 (2000): 111-118.
[34] Kamel, Samir, et al. "Pharmaceutical significance of cellulose: A review." Express Polym Lett 2.11 (2008): 758-778.
[35] Heinze, Thomas. "Cellulose: structure and properties." Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (2016): 1-52.
[36] Kataoka, Yutaka, and Tetsuo Kondo. "Changing cellulose crystalline structure in forming wood cell walls." Macromolecules 29.19 (1996): 6356-6358.
[37] Rojas, Orlando J., ed. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Vol. 271. Springer, 2016.
[38] Cox, Guy, Nuno Moreno, and Jose Feijo. "Second-harmonic imaging of plant polysaccharides." Journal of Biomedical Optics 10.2 (2005): 024013-024013.
[39] Brown Jr, R. Malcom, Andrew C. Millard, and Paul J. Campagnola. "Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy." Optics letters 28.22 (2003): 2207-2209.
[40] Friedl, Peter, et al. "Biological second and third harmonic generation microscopy." Current Protocols in Cell Biology 34.1 (2007): 4-15.
[41] Stagno, Valeria, et al. "Discrimination between softwood and hardwood based on hemicellulose content obtained with portable nuclear magnetic resonance." Cellulose 29.14 (2022): 7917-7934.
[42] Orton, Christopher R., et al. "Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods." Applied spectroscopy 58.11 (2004): 1265-1271.
[43] Terashima, Noritsugu, et al. "Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid." Journal of wood science 55 (2009): 409-416.
[44] Abe, Hisashi, et al. "Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids." Trees 11 (1997): 328-332.
[45] Burgert, Ingo, and Peter Fratzl. "Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls." Integrative and comparative biology 49.1 (2009): 69-79.
[46] Imamura, Yuji, and Hiroshi Harada. "Electron microscopic study on the development of the bordered pit in coniferous tracheids." Wood Science and Technology 7.3 (1973): 189-205.
[47] Donaldson, Lloyd, and Annette Frankland. "Ultrastructure of iodine treated wood." (2004): 219-225.
[48] So, Peter TC, et al. "Two-photon excitation fluorescence microscopy." Annual review of biomedical engineering 2.1 (2000): 399-429.
[49] Helmchen, Fritjof, and Winfried Denk. "Deep tissue two-photon microscopy." Nature methods 2.12 (2005): 932-940.
[50] Oheim, Martin, et al. "Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches." Advanced drug delivery reviews 58.7 (2006): 788-808.
[51] Thomas, Giju, et al. "Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research." Journal of Photochemistry and Photobiology B: Biology 141 (2014): 128-138.
[52] Nadiarnykh, Oleg, et al. "Coherent and incoherent SHG in fibrillar cellulose matrices." Optics express 15.6 (2007): 3348-3360.
[53] Campagnola, Paul J., and C‐Y. Dong. "Second harmonic generation microscopy: principles and applications to disease diagnosis." Laser & Photonics Reviews 5.1 (2011): 13-26.
[54] Lu, Guolan, and Baowei Fei. "Medical hyperspectral imaging: a review." Journal of biomedical optics 19.1 (2014): 010901-010901.
[55] Lim, Hoong-Ta, and Vadakke Matham Murukeshan. "Spatial-scanning hyperspectral imaging probe for bio-imaging applications." Review of Scientific Instruments 87.3 (2016): 033707.
[56] Jung, András, and Michael Vohland. "Snapshot Hyperspectral Imaging for Soil Diagnostics–Results of a Case Study in the Spectral Laboratory." Photogrammetrie-Fernerkundung-Geoinformation (2014): 511-522.
[57] Li, Qingli, et al. "Review of spectral imaging technology in biomedical engineering: achievements and challenges." Journal of biomedical optics 18.10 (2013): 100901-100901.
[58] Wang, Yu Winston, et al. "Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches." Nanotheranostics 1.4 (2017): 369.
[59] Qin, Jianwei, et al. "Line-scan hyperspectral imaging techniques for food safety and quality applications." Applied Sciences 7.2 (2017): 125.
[60] Kraus, Birgit, Manja Ziegler, and Horst Wolff. "Linear fluorescence unmixing in cell biological research." Modern research and educational topics in microscopy 2 (2007): 863-873.
[61] Zimmermann, Timo. "Spectral imaging and linear unmixing in light microscopy." Microscopy Techniques: -/- (2005): 245-265.
[62] Djikanović, D., et al. "Deconvolution of lignin fluorescence spectra: a contribution to the comparative structural studies of lignins." Russian Journal of Physical Chemistry A 81 (2007): 1425-1428.
[63] Wójtewicz, S., et al. "Dispersion corrections to the Gaussian profile describing the Doppler broadening of spectral lines." Physical Review A 93.4 (2016): 042512.
[64] Smith, Lindsay I. "A tutorial on principal components analysis." (2002).
[65] Daffertshofer, Andreas, et al. "PCA in studying coordination and variability: a tutorial." Clinical biomechanics 19.4 (2004): 415-428.
[66] Hastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009.
[67] Beyer, Kevin, et al. "When is “nearest neighbor” meaningful?." Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7. Springer Berlin Heidelberg, 1999.
[68]https://bioscience.fi/wp-content/uploads/2020/03/Hamamatsu-sCMOS-Orca-Flash4.0.pdf?x48965
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明