博碩士論文 110226063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.222.121.156
姓名 曾培鈞(PEI-CHUN TSENG)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 塑膠微粒對紅外光吸收響應之模擬與量測分析
(Simulation and Measurement Analysis of Microplastics Response to Infrared Light Absorption)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究就塑膠微粒對紅外線之吸收響應進行模擬與量測,希望能找出塑膠微粒在特定波段下,對紅外線穿透光強之影響。期望本研究能對可檢測塑膠微粒之傳感器的設計帶來幫助,並期待未來可以設計出該傳感器。
  量測時,首先架設紅外光源、準直透鏡、聚焦透鏡,將待測液體置於比色槽內並放置於載台上,使光線通過樣品並聚焦於偵測器上後,利用電腦中的儀控程式紀錄偵測器接收到的吸收電壓,再分析其結果。同時,使用光學模擬軟體ASAP重建出以上光路,將各波長下,各個材質的參數帶入計算,模擬出塑膠微粒在特定波長範圍下之表現並分析其結果,再將光源與偵測器在不同波長下之表現帶入模擬結果中,與實驗進行比對。最後用吸收率公式進行理論值計算,使模擬出的數值能與理論值相互驗證。
  從模擬的結果中,分析了不同波長之下,塑膠微粒對穿透光強之表現,可以發現塑膠微粒越多時,穿透之光強度值會越低,且呈現一種線性關係,而當微粒數量不變時,不同波長間穿透的光通量結果與塑膠微粒在該波長下之穿透率、吸收係數等參數的關聯較小,無法從結果中分析出塑膠微粒對不同波長紅外線的吸收響應差異,表示此實驗架設之下,塑膠微粒在不同波長間的穿透率大小對整體架構的影響不大。
  實驗結果顯示,當塑膠微粒的數量高達1000個時,對穿透光強的改變量約為11 %,而若是塑膠微粒浸泡於水中時,對穿透光的改變量則會增加至23 %,而使用ASAP進行模擬時,同樣的架構下,對最後的穿透光的改變量則是26 %左右,與實驗結果非常相近。
  本項實驗找出了在此架設下,塑膠微粒對紅外線之吸收響應,期望本
研究所得之數據能應用在建立塑膠微粒之傳感器上,透過對樣品的分析,找出塑膠微粒的成分、濃度。 
摘要(英) This study focuses on simulating and measuring the absorption response of microplastics to infrared radiation within specific wavelength ranges. During the measurement process, we set up an infrared light source, a collimating lens, and a focusing lens first. Then put the cuvette containing the liquid to be tested on the platform. After the light passes through the sample and focuses onto the detector, the voltage is recorded and analyzed by using a computer instrument control program. Simultaneously, an optical simulation software, ASAP, is used to simulate the optical configuration. By inputting optical parameters of materials at various wavelengths into ASAP, the influence of microplastics on the transmission intensity of infrared light is simulated and compared with the experimental results. In addition, Beer-Lambert law is utilized to calculate the theoretical absorption values, aiming to identify the differences between the simulated and theoretical values.
Based on the simulation results, it is observed that as the quantity of microplastics increases, the intensity of transmitted light decreases, and exhibits a linear relationship. When the number of particles remains constant, the radiant flux at different wavelengths show low correlation with the transmission and absorption coefficients of microplastics. This means that the spectral absorption of microplastics cannot be discerned with the current optical configuration.
The experimental results demonstrate that when the number of microplastics is 1000, the change in transmitted light intensity is approximately 11%. When microplastics are immersed in water, the change in transmitted light intensity increases to 23%. The result from ASAP simulation shows the change in transmitted light intensity around 26%, which closely aligns with the experimental result.
This study has identified the absorption response of microplastics to infrared radiation under a specific optical configuration. It is hoped that the data from this research can be applied to the development of sensors for microplastics detection.
關鍵字(中) ★ 塑膠微粒
★ 紅外線
關鍵字(英)
論文目次 摘要 vi
Abstract viii
致謝 x
目錄 xi
圖目錄 xv
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
第二章 研究背景 5
2-1 塑膠微粒 5
2-1-1 塑膠微粒的檢驗方法 5
2-1-2 塑膠微粒的組成與型態 7
2-2 紅外線 9
2-2-1 紅外線與黑體輻射 9
2-2-2 分子鍵結與紅外線之關係 10
2-2-3 紅外線光譜 12
2-3 光學模擬軟體ASAP 16
第三章 研究方法與步驟 19
3-1 系統架構 19
3-2 系統設備 21
3-2-1 紅外線光源 22
3-2-2 鏡片 23
3-2-3 比色槽 23
3-2-4 偵測器 24
3-2-5 儀控程式 25
3-3 實驗溶液 27
3-3-1 塑膠微粒尺寸 27
3-3-2 實驗溶液調配 27
3-4 ASAP模擬 28
3-4-1 光源 33
3-4-2 樣品 34
第四章 實驗結果與分析討論 35
4-1 實驗一 塑膠微粒對紅外線之吸收響應模擬 35
4-2 實驗二 量測不同重量塑膠微粒對紅外線之吸收響應 52
4-2-1 量測粒子重量0、0.35、0.7、1.05、1.4 g的吸收電壓 54
4-2-2 量測粒子數量300、500、700、1000個的吸收電壓 56
4-3 實驗三 量測不同濃度塑膠微粒對紅外線之吸收響應 59
4-4 比較塑膠微粒在水中與空氣中對紅外線之吸收響應差異 62
4-5 比較模擬與實驗結果中塑膠微粒對紅外線之吸收響應差異 64
第五章 結論與未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 70 
參考文獻 1.Sutherland, W.J., et al., A horizon scan of global conservation issues for 2016. Trends in Ecology & Evolution, 2016. 31(1): p. 44-53.
2.Bergmann, M., Gutow, L., and Klages , M., Marine Anthropogenic Litter. Berlin: Springer, 2015: p. 29-74.
3.C. Campanale, et al., A detailed review study on potential effects of microplastics and additives of concern on human health, International Journal of Environmental Research and Public Health, 17(4), 1212, 2020.
4.Hidalgo-Ruz, V., et al., Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 2012. 46(6): p. 3060-3075.
5.Ng, K. and Obbard, J., Prevalence of microplastics in Singapore’s coastal marine environment. Marine Pollution Bulletin, 2006. 52(7): p. 761-767.
6.Thompson, R.C., et al., Lost at sea: where is all the plastic? Science, 2004. 304(5672): p. 838.
7.Vianello, A., et al., Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science, 2013. 130: p. 54-61.
8.Harrison, J.P., Ojeda, J.J., and Romero-González, M.E., The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Science of the Total Environment, 2012. 416: p. 455-463.
9.Frias, J., Sobral, P., and Ferreira, A.M., Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin, 2010. 60(11): p. 1988-1992.
10.Reddy, M.S., et al., Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuarine, Coastal and Shelf Science, 2006. 68(3-4): p. 656-660.
11.Arthur, C., Baker, J.E., and Bamford, H.A., Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. 2009.
12.Mason, S.A., Welch, V.G., and Neratko, J., Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 2018. 6: p. 407.
13.Koelmans, B., et al., A scientific perspective on microplastics in nature and society. 2019: SAPEA.
14.D. Li, et al., Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation, Nature Food 1, pp. 746-754, 2020.
15.Bradney, L., et al., Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 2019. 131.
16.Yong, C.Q.Y., Valiyaveetill, S., and Tang, B.L., Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 2020. 17(5).
17.Eriksen, M., et al., Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 2013. 77(1-2): p. 177-182.
18.Browne, M.A., Galloway, T.S., and Thompson, R.C., Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology, 2010. 44(9): p. 3404-3409.
19.Claessens, M., et al., Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 2011. 62(10): p. 2199-2204.
20.Imhof, H.K., et al., A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 2012. 10(7): p. 524-537.
21.Liebezeit, G. and Dubaish, F., Microplastics in beaches of the East Frisian islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination ad Toxicology, 2012. 89(1): p. 213-217.
22.Nuelle, M.-T., et al., A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 2014. 184: p. 161-169.
23.Claessens, M., et al., New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 2013. 70(1-2): p. 227-233.
24.Doyle, M.J., et al., Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Marine Environmental Research, 2011. 71(1): p. 41-52.
25.Van Cauwenberghe, L., et al., Microplastic pollution in deep-sea sediments. Environmental Pollution, 2013. 182: p. 495-499.
26.Beasley, M.M., et al., Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science, 2014. 46:p. 16–22.
27.Herschel, W., XIV. Experiments on the refrangibility of the invisible rays of the sun. Philosophical Transactions of the Royal Society of London, 1800(90): p. 284-292.
28.Choi, K.-K., The Physics of Quantum Well Infrared Photodetectors. World Scientific, 1997. 7: p. 1-25
29.房逸凡, 量子點紅外線偵測器之研究 電子工程學系電子研究所碩士論文. 2007: 國立交通大學.
30.Wade Jr, L., Chapter 12: Infrared spectroscopy and mass spectrometry. Organic Chemistry, 2012: p. 515-519,521.
31.PerkinElmer, S.b. Identity Verification and Quality Testing of Polymers Using Mid Infrared Spectroscopy. 2015 [cited 2021 8 July]; Available from: https://www.azom.com/article.aspx?ArticleID=12386.
32.ASAP Primer 入門指南. [cited 2023 19 June]; Available from: http://uotek.com.tw/wp-content/uploads/ASAP-%E5%85%A5%E9%96%80%E6%89%8B%E5%86%8A-%E4%B8%AD%E6%96%87.pdf
33.ARCoptix ARCLIGHT-近紅外和ARCLIGHT-中紅外. [cited 2023 19 June]; Available from: https://www.arcoptix.com/nir_ir_lamp.htm
34.Quartz Cuvettes. [cited 2023 19 June]; Available from: https://www.ossila.com/products/quartz-cuvettes
35.System, V., Spectral/Rlectrical Characteristics, T. report, Editor.
36.張祐瑞, 對溶液中微塑粒進行分類之實驗 機械工程學系碩士論文. 2020: 國立中央大學. p. 30.
37.RefractiveIndex.INFO. [cited 2023 19 June]; Available from: https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson
38.RefractiveIndex.INFO. [cited 2023 19 June]; Available from: https://refractiveindex.info/?shelf=main&book=H2O&page=Hale
39.RefractiveIndex.INFO. [cited 2023 19 June]; Available from: https://refractiveindex.info/?shelf=organic&book=polyethylene&page=David
40.RefractiveIndex.INFO. [cited 2023 19 June]; Available from: https://refractiveindex.info/?shelf=main&book=TiO2&page=Kischkat
41.Blackbody Calculator. [cited 2023 19 June]; Available from: https://www.spectralcalc.com/blackbody_calculator/blackbody.php
42.Ortiz-Tafoya, M. and Tecante, A., Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan. Data in Brief, 2018. 19: p. 642-650.
指導教授 陳怡君(YI-CHUN CHEN) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明