博碩士論文 111226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.128.189.104
姓名 方筱喬(Hsiao-Chiao Fang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 投射式移相弦波用於微小物體形貌量測之研究
(Research on the Shape Measurement of Small Objects by Phase Shifting Fringe Projection Profilometry.)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本論文介紹利用五步相位移的方式重建微小物體的三維輪廓,而相位輪廓儀對於條紋相位的精確度要求相當高,因此本論文使用經特殊設計的穿透式光罩通過成像系統投影出接近完美正弦波之投影條紋,再透過傅立葉轉換濾波以及平均化之方法過濾影像雜訊使條紋更加精確。透過多張影像平均法,拍攝所得之條紋灰階分布與理想正弦波之擬合度可達到0.9907,參考平面之條紋灰階分布可再透過傅氏轉換濾波使擬合度達到1。
使用標準球作為待側物,透過本系統量測之平均曲率半徑為22.494 mm,標準差為3 μm,將重建結果與理想球面重疊做比較,RMSE值為10 μm。
而由於使用三角量測法之架構具有量測工作範圍的限制,本論文提出透過位移待側物量測不同區塊並做拼接的方式還原較工作範圍大的物體的三維輪廓。
我們分別對兩種自由區面做重建與透鏡實際描邊結果重疊進行比較,第一種透鏡之RMSE值為3 μm,第二種之RMSE值為8 μm。
摘要(英) This paper introduces the reconstruction of the three-dimensional contour of small objects using a five-step phase-shifting method.
For precise measurement of the phase contour, a phase-shifting profilometer with high accuracy requirements is used in this paper. It employs a specially designed transmissive optical mask to project near-perfect sinusoidal fringes through the imaging system. Fourier transform filtering and averaging methods are then applied to filter image noise and improve the accuracy of the fringes. The fitting degree of the grayscale distribution of the fringes obtained through multiple image averaging can reach 0.9907, and the reference plane′s fringe grayscale distribution can achieve a fitting degree of 1 after Fourier transform filtering.
Using a standard sphere as the test object, the average curvature radius measured by the system is 22.494 mm with a standard deviation of 3 μm. Comparing the reconstruction result with the ideal spherical surface, the Root Mean Square Error (RMSE) value is 10 μm.
Due to the limitations of the triangulation method′s measurement range, this paper proposes a method to reconstruct the three-dimensional contour of larger objects by measuring different sections through displacement and stitching of the test object.
The reconstruction results of two different freeform surfaces are compared with the actual outlines of the lenses. The RMSE value for the first lens is 3 μm, and for the second lens, it is 8 μm.
關鍵字(中) ★ 五步相位移
★ 影像雜訊處理
關鍵字(英)
論文目次 摘要 IV
ABSTRACT V
致謝 VI
目錄 VII
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 條紋投影輪廓儀發展與簡介 2
1-3 研究動機 3
1-4 論文大綱 4
第二章 基礎原理 5
2-1 條紋投影輪廓儀基本原理 5
2-1-1 五步相位移原理 6
2-1-2 光學三角量測法 7
2-1-3 相位移誤差分析 10
2-2 相位展開演算法 13
2-3 光罩設計原理 16
2-4 傅立葉轉換 18
第三章 相機系統 20
3-1 相機感光元件 20
3-2 相機原始圖檔 23
3-3 電子雜訊 24
3-4 影像處理 26
3-4-1 多張照片平均去除電子雜訊 27
3-4-2 傅氏轉換濾波 29
第四章 移相弦波形貌量測系統 32
4-1 實驗架構 32
4-2 三維形貌重建 33
4-2-1 標準球體 33
4-2-2 自由曲面透鏡 38
4-3 重建結果拼接 40
4-4 實驗結果分析 49
4-4-1 標準球體 49
4-4-2 自由曲面透鏡 49
第五章 結論 54
參考文獻 55
中英文名詞對照表 60
參考文獻 1. F. Chen, G. M. Brown, and M. Song, “Overview of 3-D shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
2. S. Raab, “Three dimensional coordinate measuring apparatus,” United State Patent, US5402582A (1995).
3. M. Abramovici, J. M. Emmert, and C. E. Stroud, “Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems,” Proceedings Third NASA/DoD Workshop on Evolvable Hardware, Long Beach, (2001).
4. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133-140 (2010).
5. P. Hariharan, Optical interferometry, 2nd eds. (Elsevier, Amsterdam, 2003).
6. Q. Kemao, “Two-dimensional windowed fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304-317 (2007).
7. Z. Malacara and M. Servin, Interferogram analysis for optical testing, (CRC Press, Boca Raton, 2016).
8. S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917-1926 (2011).
9. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, (2010).
10. D. Marr, T. Poggio, E. C. Hildreth, and W. E. L. Grimson, A computational theory of human stereo vision, (Birkhäuser, Boston, 1991).
11. S. D. Cochran and G. Medioni, “3D surface description from binocular stereo,” IEEE Transactions on Pattern Analysis & Machine Intelligence 14, 981-994 (1992).
12. K. L. Boyer and A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Transactions on Pattern Analysis & Machine Intelligence 9, 14-28 (1987).
13. L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi-pass dynamic programming,” Proceedings First International Symposium on 3D Data Processing Visualization and Transmission, Padova, (2002).
14. D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, (2003).
15. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon 3, 128-160 (2011).
16. S. H. Rowe and W. T. Welford, “Surface Topography of Non-Optical Surfaces by Projected Interference Fringes,” Nature 216, 786-788 (1967).
17. S. H. Rowe, “Projected Interference Fringes in Holographic Interferometry,” J. Opt. Soc. Am. 61, 1599-1603 (1971).
18. R. Crane, “Interference Phase Measurement,” Appl. Opt. 8, 538 (1969).
19. J. H. Bruning, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, and D. R. Herriott, “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974).
20. H. Takasaki, “Moiré topography,” Appl. Opt. 9, 1467-1472 (1970).
21. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated Phase-measuring Profilometry: A Phase Mapping Approach,” Appl. Opt. 24, 185-188 (1985).
22. M. Takeda, H. Ina, and S. Koboyashi, “Fourier-transform Method of Fringe-pattern Analysis for Computer-based Topography and Interferometry,” J. Opt. Soc. Am. 72, l56-l60 (1982).
23. M. Takeda and K. Motoh, “Fourier Transform Profilometry for The Automatic Measurement of 3-D Object Shapes,” Appl. Opt. 22, 3977-3982 (1983).
24. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated Phase-measuring Profilometry of 3-D Diffuse Objects,” Appl. Opt. 23, 3105-3108 (1984).
25. Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052-1061 (2009).
26. P. S. Huang, “High-resolution real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
27. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
28. R. M. Kowarschik, P. Kuehmstedt, J. Gerber, W. Schreiber, and G. Notni, “Adaptive optical 3-D-measurement with structured light,” Opt. Eng. 39, 150-158 (2000).
29. W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159-169 (2000).
30. Y. Hu, Q. Chen, S. Feng, T. Tao, H. Li, and C. Zuo, “Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection,” Meas. Sci. Technol. 28, 1361-6501 (2017).
31. J. Sun, C. Zuo, S. Feng, S. Yu, Y. Zhang, and Q. Chen, “Improved intensity-optimized dithering technique for 3D shape measurement,” Opt. Lasers Eng. 66, 158-164 (2015).
32. G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35, 3682-3684 (2010).
33. C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51, 4477-4490 (2012).
34. Y. Wang and S. Zhang, “Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 51, 861-872 (2012).
35. S. Zhang, “Flexible 3D shape measurement using projector defocusing: extended measurement range,” Opt. Lett. 35, 934-936 (2010).
36. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565-6573 (1999).
37. M. Zhang, Q. Chen, T. Tao, S. Feng, Y. Hu, and H. Li, “Robust and efficient multi- frequency temporal phase unwrapping: optimal fringe frequency and pattern se- quence selection,” Opt. Express 25, 20381-20400 (2017).
38. H. Li, Y. Hu, T. Tao, S. Feng, M. Zhang, and Y. Zhang, “Optimal wavelength selec- tion strategy in temporal phase unwrapping with projection distance minimization,” Appl. Opt. 57, 2352-2360 (2018).
39. S. Van der Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Lasers Eng. 87, 18-31 (2016).
40. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (?FTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70-91 (2018).
41. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20, 19493-19510 (2012).
42. S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541-10551 (2015).
43. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149-158 (2010).
44. Z. Qi, Z. Wang, J. Huang, C. Xing, and J. Gao, “Error of image saturation in the structured- light method,” Appl. Opt. 57, A181-A188 (2018).
45. J. Long, J. Xi, J. Zhang, M. Zhu, W. Cheng, and Z. Li, “Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error ca-pability,” J. Mod. Opt. 63, 1695-1705 (2016).
46. S. Van der Jeught, “Real-time geometric lens distortion correction using a graphics processing unit,” Opt. Eng. 51, 027002 (2012).
47. J. Peng, M. Wang, D. Deng, X. Liu, Y. Yin, and X. Peng, “Distortion correction for mi- croscopic fringe projection system with Scheimpflug telecentric lens,” Appl. Opt. 54, 10055-10062 (2015).
48. K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Lasers Eng. 85, 53-64 (2016).
49. J. Pawley, Handbook of biological confocal microscopy, (Springer Science & Business Media, Berlin, 2010).
50. K. G. Larkin and B. F. Oreb, “Design and Assessment of Symmetrical Phase-shifting Algorithms,” J. Opt. Soc. Am. A 9, 1740-1748 (1992).
51. S. Zhang, “High-resolution 3-D Profilometry with Binary Phase-shifting Methods,” Appl. Opt. 50, 1753-1757 (2011).
52. P. Hariharan, B. F. Oreb, and T. Eiju, ‘‘Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,’’ Appl. Opt. 26, 2504-2506 (1987).
53. 柯韋廷,利用條紋投影技術進行物體表面之三維形變量量測,國立中山大學材料與光電科學學系研究所碩士論文,中華民國一百零一年。
54. W. H. Su, “Color-encoded Fringe Projection for 3D Shape Measurements,” Opt. Express 15, 13167-13181 (2007).
55. 盧立瑋,相位移動器校正之研究,國立中央大學光電科學研究所碩士論文,中華民國九十五年。
56. 徐維懋,鏡像輔助斷層掃描相位顯微鏡,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
57. R. Cusack, J. Huntley, and H. Goldrein, “Improved Noise-immune Phase-unwrapping Algorithm,” Appl. Opt. 34, 781-789 (1995).
58. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata Method for Phase Unwrapping,” J. Opt. Soc. Am. A 4, 267-280 (1987).
59. M. J. Huang and C. J. Lai, “Innovative phase unwrapping algorithm: hybrid approach,” Opt. Eng. 41, 1373-1386 (2002).
60. 陳宏名,雙頻式光柵於相移式形貌量測儀之應用,國立中山大學材料科學研究所碩士論文,中華民國九十四年。
61. Sony, “Sony will no more make CCD sensors. Future is CMOS only,” https://www.sonyalpharumors.com/sony-will-no-more-make-ccd-sensors-future-is-cmos-only/.
62. NTU website, “normal distribution (Gaussian distribution),” http://homepage.ntu.edu.tw/~clhsieh/biostatistic/4/4-1.htm.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明