博碩士論文 102286005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.142.197.212
姓名 陳政憲(Cheng-Hsien Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 道路照明環境與視覺效應之研究
(Study of vision evaluation for various illumination environments on road ways)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本論文中,我們開發一道路照明量測系統,藉此評估道路照明與視覺效應,其中道路照明量測系統包含車載式量測儀與影像式輝度量測儀,其中車載式量測儀為將多組照度計、陀螺儀與車輪編碼器紀錄車頂上之照度分佈,透過演算分析計算出路燈之光強度分佈,並以CIE 140道路照明分析原則,即時計算出路面上之照度分佈。影像式輝度量測儀透過一系列之校正與修正流程,可用於量測路面之輝度分佈。此外,本論文提出一種快速路面反射率量測法,係透過影像式輝度量測儀在設定之距離下,藉由路燈之照明,可分析出路面之反射率分佈,並可計算路面之反射率表。本論文中,以影像式輝度量測儀應用於潮濕路面之反射率分佈,藉此分析LED與高壓鈉燈對於觀測者之視覺評估。
摘要(英) In this thesis, we developed a road lighting measurement system to evaluate the assessment of road lighting and visual effects. The road lighting measurement system includes an equipped vehicle and an imaging luminance measuring device. The equipped vehicle be used for measuring the illuminance distribution on the vehicle’s top which using illuminance-meter modules, a gyroscope, and a wheel encoder. Through algorithmic analysis, it calculates the light intensity distribution of the road light and the illuminance distribution on the road surface in-situ according to the CIE 140 road lighting analysis principles. The imaging luminance measurement device, through a series of calibration and correction processes, can be used to measure the luminance distribution of the road surface.
Furthermore, this research proposed a fast method for measuring road surface reflectance. Using the imaging luminance measurement device at the specified distances and utilizing the illumination from the road lights, it analyzes the reflectance distribution of the road surface and calculates the reflectance table of the road surface. In this thesis, the imaging luminance measurement device is applied to measure the reflectance distribution of wet road surfaces, enabling the analysis of LED and high-pressure sodium lamps in terms of visual evaluation by observers.
關鍵字(中) ★ 發光二極體
★ 道路照明
★ 視覺效應
★ 車載量測系統
★ 影像式輝度計
關鍵字(英) ★ LED
★ road lighting
★ vision evaluation
★ equipped vehicle
★ imaging luminance measurement device
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1-1 道路照明量測儀系統之研究背景與動機 1
1-2 道路路面量測之研究背景與動機 4
1-3 論文大綱 6
第二章 光輻射度量基本原理 7
2-1 照度基本原理與計量追溯 7
2-2 輝度基本原理與計量追溯 9
2-3 全光通量量測 16
2-4 雨霧環境與道路照明之文獻回顧 29
第三章 LED道路照明現場量測標準與程序 33
3-1 道路照明要求 33
3-2 LED道路照明現場量測儀器 36
3-3 LED道路照明量測位置與區域取樣方法 38
3-4 LED道路照明現場量測程序 40
第四章 道路照明量測儀系統之研究 45
4-1 車載式道路照度自動量測技術 45
4-2 車載式影像輝度自動量測技術 60
4-3 車載式照度自動量測系統之應用討論 74
第五章 道路路面量測與分析 76
5-1 極潮溼路面高角度反射特性量測與分析 76
5-2 乾燥路面高角度反射 84
5-3 路面鋪面材質與LED道路照明輝度之分析 90
第六章 結論 96
參考文獻 98
參考文獻 [1] L. J. Ramirez Lopez and A.I. Grijalba Castro, “Sustainability and Resilience in Smart City Planning: A Review,” Sustainability 13, 181 (2021).
[2] P. Girardi and A. Temporelli, “Smartainability: a methodology for assessing the sustainability of the smart city,” Energy Procedia 111, 810-816 (2017).
[3] T. A. Maria and M. Niamh, “The Concept of Sustainability in Smart City Definitions, Front. Built Environ. 6, 1-10 (2020).
[4] O. Ayan and B. Turkay, “IoT-based energy efficiency in smart homes by smart lighting solutions,” presented at 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA). IEEE, Bourgas, Bulgaria, 3-6 June 2020.
[5] G. Shahzad, H. Yang, A. W. Ahmad, and C. Lee, “Energy-efficient intelligent street lighting system using traffic-adaptive control,” IEEE Sensors Journal 16(13), 5397-5405 (2016).
[6] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, “A Review of Smart Homes—Past, Present, and Future,” presented at IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), Nov 2012, 1190-1203.
[7] W. Hong and B. N. Rahmat, “Energy consumption, CO2 emissions and electricity costs of lighting for commercial buildings in Southeast Asia,” Sci. Rep. 12, 13805 (2022).
[8] P. T. Daely, H. T. Reda, G. B. Satrya, J. W. Kim, and S. Y. Shin, “Design of smart LED streetlight system for smart city with web-based management system,” IEEE Sensors Journal 17(18), 6100-6110 (2017).
[9] Z. Chen, C. B. Sivaparthipan, and B. Muthu, “IoT based smart and intelligent smart city energy optimization,” Sustain. Energy Technol. Assess. 49, 101724 (2022).
[10] M. E. Kompier, K. C. Smolders, and Y. A. De Kort, “A systematic literature review on the rationale for and effects of dynamic light scenarios,” Build Environ. 186, 107326 (2020).
[11] I. Wojnicki and L. Kotulski, “Empirical study of how traffic intensity detector parameters influence dynamic street lighting energy consumption: A case study in Krakow, Poland,” Sustainability 10(4), 1221 (2018).
[12] K. H. Bachanek, B. Tundys, T. Wiśniewski, E. Puzio, and A. Maroušková, “Intelligent street lighting in a smart city concepts- a direction to energy saving in cities: an overview and case study,” Energies 14(11), 3018 (2021).
[13] G. Jia, G. Han, A. Li, and J. Du, “SSL: Smart Street Lamp Based on Fog Computing for Smarter Cities,” presented at IEEE Transactions on Industrial Informatics, 14(11), Nov. 2018, 4995-5004.
[14] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling real-time traffic management for smart cities,” IEEE Wirel. Commun. 26(1), 87-93 (2019).
[15] S. Mallapuram, N. Ngwum, F. Yuan, C. Lu, and W.Yu, “Smart city: The state of the art, datasets, and evaluation platforms,” presented at 2017 IEEE/ACIS 16th International Conference on Computer and Information Science, 24-26 May 2017, 447-452.
[16] I. Zubizarreta, A. Seravalli, and S. Arrizabalaga, “Smart city concept: What it is and what it should be,” J. Urban Plan Dev. 142(1), 04015005 (2016).
[17] D. Mohan, “Road safety in less-motorized environments: future concerns,” Int. J. Epidemiol. 31(3), 527-532 (2002).
[18] R. Bhagavathula, R. B. Gibbons, and C. J. Edwards, “Relationship between roadway illuminance level and nighttime rural intersection safety,” Transp. Res. Rec. 2485(1), 2485 (2015).
[19] H. Zhou, P. Hsu, and P. Lin, “A New Method to Evaluate Roadway Lighting Systems and Its Safety Effects,” presented at Proceedings of the ITE 2010 Annual Meeting and Exhibit, Vancouver, Canada, Aug. 2010, 8-11.
[20] F. Greffier, V. Muzet, V. Boucher, F. Fournela, and R. Dronneau, “Use of an imaging luminance measuring device to evaluate road lighting performance at different angles of observation,” presented at Proceedings of the 29th Quadrennial Session of the CIE, Washington DC, USA, 14-22 June 2019, 553-562.
[21] P. Tomczuk, M. Chrzanowicz, P. Jaskowski, and M. Budzynski, “Evaluation of street lighting efficiency using a mobile measurement system,” Energies 14(13), 3872 (2021).
[22] R. B. Gibbons and J. Meyer, “Development of a Mobile Measurement System for Roadway Lighting,” presented at National Surface Transportation Safety Center for Excellence: Blacksberg, VA, USA, 2018.
[23] “Road lighting calculations,” CIE 140: 2019.
[24] “On site measurement of the photometric properties of road and tunnel lighting,” CIE 194: 2011.
[25] “Road lighting Performance requirements,” EN 13201-2:2015.
[26] S. W. Hsu, C. H. Chen, K. N. Wu, and S. T. Hung, “Colorimetric properties of LED illuminated roads studied by in-field measurements and simulations,” presented at 4th CIE Expert Symposium on Colour and Visual Appearance, Prague, Czech Republic, 6-7 Sep. 2016, 135-136.
[27] S. W. Hsu, S.W. K. N. Wu, and S.T. Hung, “Performance of LED road lightings studied by detailed in-field measurements with various devices,” presented at Proceedings of the 28th Quadrennial Session of the CIE, Manchester, UK, 28 June- 4 July 2015, 590-591.
[28] C. Shew, A. Pande, and C. Nuworsoo, “Transferability and robustness of real-time freeway crash risk assessment,” J. Saf. Res. 46, 83–90 (2013).
[29] H. M. Hassan and M. A. Abdel-Aty, “Predicting reduced visibility related crashes on freeways using real-time traffic flow data,” J. Saf. Res. 45, 29–36 (2013).
[30] M. Abdel-Aty, A. -A. Ekrama, H. Huang, and K. Choic, “A study on crashes related to visibility obstruction due to fog and smoke,” Accid. Anal. Prev. 43, 1730–1737 (2011).
[31] Tom Gibson, “Virginia′s smart road: Where researchers make the extreme weather,” Weatherwise 68(4), 20-27 (2015).
[32] C. D. Galatanu and L. Canale, “Measurement of Reflectance properties of asphalt using photographical methods,” presented at Proc. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 1-6 (2020).
[33] R. M. Spieringhs, J. Audenaert, K. Smet, I. Heynderickx, and P. Hanselaer, “Road marking BRDF model applicable for a wide range of incident illumination conditions,” J. Opt. Soc. Am. A 40, 590-601 (2023).
[34] S. Y. Shin, J. I. Lee, W. J. Chung, S.-H. Cho, and Y. G. Choi, “Assessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurement,” Curr. Opt. Photon. 3, 415-422 (2019).
[35] T. Schnell, F. Aktan, and Y. C. Lee, “Nighttime visibility and retroreflectance of pavement markings in dry wet and rainy conditions,” Transp. Res. Rec. 1824, 144‒155 (2003).
[36] J. Hu, S. Sun, and R. Wang, “Research on the influence of light source characteristics on traffic visual distance in foggy areas at night,” Build Environ. 212, 108818 (2022).
[37] C. C. Sun, X. H. Lee, I. Moreno, C. H. Lee, Y. W. Yu, T. H. Yang, and T. Y. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photonics J. 9, 1-13 (2017).
[38] T. C. Teng, W. S. Sun, and J. L. Lin, “Designing an LED luminaire with balance between uniformity of luminance and illuminance for non-Lambertian road surfaces,” Appl. Opt. 56, 2604-2613 (2017).
[39] A. Zatari, G. Dodds, K. McMenemy, and Richard Robinson, “Glare, luminance, and illuminance measurements of road lighting using vehicle mounted CCD cameras,” LEUKOS 1, 85-106 (2005).
[40] Z. Zhu, D. Ma, Q. Hu, Y. Tang, and R. Liang, “Catadioptric freeform optical system design for LED off-axis road illumination applications,” Opt. Express 26, A54-A65 (2018).
[41] F. Greffier, V. Boucher, V. Muzet, S. Buschmann, and S. Völker, “A Grid in Perspective for Road Lighting Calculations,” LEUKOS, 1-16 (2022).
[42] V. Boucher and F. Greffier, “Space of basis functions to retrieve road surface reflection tables from luminance maps,” Light. Res. Technol., (2022).
[43] V. Muzet, J. Bernasconi, P. Iacomussi, S. Liandrat, F. Greffier, P. Blattner, J. Reber, and M. Lindgren, “Review of road surface photometry methods and devices–Proposal for new measurement geometries,” Light. Res. Technol 53(3), 213-229 (2021).
[44] A. M. Ylinen, T. Pellinen, J. Valtonen, M. Puolakka, and L. Halonen, “Investigation of Pavement light reflection characteristics,” Road Mater. Pavement Des. 12, 587-614 (2011).
[45] L. W Lai, “Poor visibility in winter due to synergistic effect related to fine particulate matter and relative humidity in the Taipei metropolis, Taiwan,” Atmosphere 13, 270 (2022).
[46] A. K. Jägerbrand and J. Sjöbergh, “Effects of weather conditions, light conditions, and road lighting on vehicle speed,” SpringerPlus 5, 505 (2016).
[47] N. Hautière, E. Dumont, R. Brémond, and V. Ledoux, “Review of the mechanisms of visibility reduction by rain and wet road,” presented at 8th International Symposium on Automotive Lighting, 445-455 (2009).
[48] R. Kurata, H. Watanabe, M. Tohno, T. Ishii, and H. Oouchi, “Evaluation of the detection characteristics of road sensors under poor-visibility conditions,” presented at IEEE Intelligent Vehicles Symposium, 538-543 (2004).
[49] M. S. Shehata, J. Cai, W. M. Badawy, T. W. Burr, M. S. Pervez, E. J. Johannesson, and A. Radmanesh, “Video-based automatic incident detection for smart roads: The outdoor environmental challenges regarding false alarms,” IEEE trans Intell Transp Syst. 9, 349-360 (2008).
[50] T. Yager, B. Gallaway, D. L. Ivey, and J. M. Mounce, “Influence of Roadway discontinuities on safety: Water accumulation,” Transportation Research Board of the National Academies, 51–60 (2009).
[51] P. Jonsson, J. Casselgren, and B. Thörnberg, “Road surface status classification using spectral analysis of NIR camera images,” IEEE Sens. J. 15, 1641-1656 (2015).
[52] F. M. Alsalami, O. C. L. Haas, A. Al-Kinani, C. -X. Wang, Z. Ahmad, and S. Rajbhandari, “Impact of dynamic traffic on vehicle-to-vehicle visible light communication systems,” IEEE Syst J. 16, 3512-3521 (2022).
[53] S. W. Hsu, C. H. Chen, and Y. D Jiaan, “Measurements of UGR of LED light by a DSLR colorimeter,” presented at SPIE Optical Engineering + Applications, 2012, 848415.
[54] “Road surface and road marking reflection characteristics,” CIE 144: 2001.
[55] Z. W. Kim, “Robust Lane Detection and Tracking in Challenging Scenarios,” IEEE Trans. Intelligent Transportation Systems 9, 16 (2008).
[56] “ILV: International Lighting Vocabulary,” 2nd, CIE S 017/E:2020.
[57] “Test method for LED lamps, LED luminaires and LED modules,” CIE S 025/E:2015.
[58] “Characterization of the performance of illuminance meters and luminance meters,” CIE S 023/E:2013.
[59] “Characterization of the performance of illuminance meters and luminance meters,” ISO/CIE 19476:2014.
[60] J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2009), Chap. 2.
[61] “Colorimetry,” 4th , CIE 015:2018.
[62] “The basis of physical photometry,” 3rd , CIE 018:2019.
[63] “Measurement of luminous flux,” CIE 084:1989.
[64] “The photometry and goniophotometry of luminaires,” CIE 121:1996.
[65] “Method of measuring and specifying colour rendering properties of light sources,” CIE 13.3:1995.
[66] “Colour fidelity index for accurate scientific use,” CIE 224:2017.
[67] “Colour rendering of white led light sources,” CIE 177:2007.
[68] “Optical and electrical measurements of solid state lighting products,” ANSI/IES LM79-19.
[69] Y. Ohno, “Detector-based luminous flux calibration using absolute integrating sphere method,” Metrologia 35, 473-478 (1998).
[70] K. N. Wu and C. H. Chen, “Integrating sphere space uniformity evaluation for luminous flux measurement of LED,” Measurement Information 147, 20-25 (2012).
[71] C. H. Chen, B. J. Pong, and Y. D. Jiaan, “Limitation study of integrating sphere for directional light source,” presented at NCSLI Workshop & Symposium (2012).
[72] C. H. Chen, B. J. Pong, Y. D. Jiaan, and H. L. Lin “Lamp orientation dependence of an integrating sphere response for directional light sources in luminous flux measurement” NCSLI Measure, 8(2), 46-51 (2013).
[73] M. Abdel-Aty, A.-A. Ekram, H. Huang, and K. Choi, “A study on crashes related to visibility obstruction due to fog and smoke,” Accid. Anal. Prev. 43(5), 1730-1737 (2011).
[74] A. J. Khattak and K. K. Knapp, “Interstate highway crash injuries during winter snow and nonsnow events,” Transp. Res. Rec. 1746, 30–36 (2001).
[75] P.O. Wanvik, “Effects of road lighting: an analysis based on Dutch accident statistics 1987–2006,” Accid. Anal. Prev. 41,123–128 (2009).
[76] Y. Wang, L. Liang, and L. Evans “Fatal crashes involving large numbers of vehicles and weather,” J. Saf. Res. 63, 1-7 (2017).
[77] B. Zhai, J. Lu, and B. Wu, “Real-time prediction of crash risk on freeways under fog conditions,” Int. J. Transport. Sci. Technol., 1-12 (2020).
[78] S. S. Muhammad, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[79] R. M. Pierce, J. Ramaprasad, E. C. Eisenberg, “Optical attenuation in fog and clouds,” Opt. Wireless Commu. IV. (2001).
[80] P. Duthon, M. Colomb, and F. Bernardin, “Light Transmission in Fog: The Influence of Wavelength on the Extinction Coefficient,” Appl. Sci. 9(14), 2843 (2019).
[81] W. Park, M. Jin, Y. Kim, K. Kim, and S. Lee, “Investigating the effect of road lighting color temperature on road visibility in night foggy conditions,” Appl. Ergon. 106, 103899 (2023).
[82] “Road lighting - Part 1: Guidelines on selection of lighting classes,” EN 13201-1:2014.
[83] “Road lighting - Part 2: Performance requirements,” EN 13201-2:2015.
[84] 汽車及行人通行用道路照明,CNS 10779,民國100年。
[85] T. Porsch, A. Walking, F. Schmift, and C. Schierz, “Measurement of the threshold increment (TI) in road lighting based on using ILMD,” presented at Proc. of CIE 2014 Conference, 237-243 (2014).
[86] S. W. Hsu, C. H. Chen, and C. C. Sun, “Road Lighting Measurements by an Equipped Vehicle,” presented at CIE, Washington DC, USA, 14-22 June 2019.
[87] C. H. Chen, S. W. Hsu, T. H. Yang, and C. C. Sun, “Design of an Equipped Vehicle for In Situ Road Lighting Measurement,” sustainability 15, 10478 (2023).
[88] “Characterization of Imaging Luminance Measurement Devices (ILMDs),” CIE 244:2021.
[89] 交通部,交通工程規範,民國110年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明