參考文獻 |
[1] E. Tokumitsu, A. G. Dentai, C. H. Joyner, S. Chandrasekhar, “InP/InGaAs double heterojunction bipolar transistors grown by metalorganic vapor phase wpitaxy with sulfur delta doping in the collector region.” Appl. Phys. Lett., vol 57, pp. 2841–2843, 1990.
[2] K. Yang, G. O. Munns, G. I. Haddad, “High fmax InP double heterojunction bipolar transistors with chirped InGaAs/InP superlattice base–collector junction grown by CBE,” IEEE Electron Device Lett., vol 18, pp. 553–555, November. 1997.
[3] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high–performance InP/InGaAs double–heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1319–1326, August 1994.
[4] H. Wang, Geok Ing Ng, “Electrical properties and transport mechanisms of InP/InGaAs HBTs operated at low temperature,” IEEE Trans. Electron Devices, vol. 48, pp. 1492–1497, August 2001.
[5] C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, “Non–blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base–collector junction,” IEEE Electron Device Lett., vol. 20, pp. 155–157, 1999.
[6] M. W. Dvorak, O. J. Pitts, S. P. Watkins, and C. R. Bolognesi, “Abrupt junction InP/GaAsSb/InP double heterojunction bipolar transistors with fT as high as 250 GHz and BVCEO≧ 6 V,” Proc. IEEE Int. Electron Device Meeting, pp. 178–181, 2000.
[7] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, “300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO≧ 6 V,” IEEE Electron Device Lett., vol. 22, no. 8, pp. 361–363, Aug. 2001.
[8] Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe and M. Uchida, “Improvement of current gain of C–doped GaAsSb–base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol. 87, p. 023503, Jul. 2005.
[9] H. G. Liu, O. Ostinelli, Y. Zeng and C. R. Bolognesi, “High–current–gain InP/InGaP/GaAsSb/InP DHBTs with fT= 436 GHz,” IEEE Electron Device Lett., vol. 28, no. 10, pp. 852–855, Oct. 2007.
[10] S. P. Watkins, O.J. Pitts, C.Dale, X. G. Xu, M. W. Dvorak, N.Matine and C. R.Bolognesi, “Heavily carbon–doped GaAsSb grown on InP for HBT applications,” J.Crystal Growth., vol. 221, pp. 59–65, 2000.
[11] H. G. Liu, N. Tao, S. P. Watkins and C. R. Bolognesi, “Extraction of the average collector velocity in high–speed type–II InP–GaAsSb–InP DHBTs,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 769–771, Dec. 2004.
[12] H. G. Liu, O. Ostinelli, Y. Zeng and C. R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded–Base and fT × BVCEO > 2.5 THz–V at Room Temperature,” in Iternation Electron Device Meeting., pp. 667–670, 2007.
[13] W. Snodgrass, B. Wu, K. Y. Cheng, and M. Feng, “Type–II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultenous fT, fMAX > 400 GHz ” in Iternation Electron Device Meeting., pp. 663–666, 2007.
[14] I. Vurgaftman, J. R. Meyer and L. R. Ram–Mohan; “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 28, 5815–5875 (2001)
[15] S. H. Chen, S. Y. Wang, R. J. Hsieh and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid–source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 679–681, Aug. 2007.
[16] H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Garbuzov, S. Y. Narayan “2.78 mm InGaAsSb/AlGaAsSb multiple quantum–well lasers with metastable InGaAsSb wells grown by molecular beam epitaxy,” J.Crystal Growth., vol. 150, pp. 1354–1357, 1995
[17] M. Mebarki, D.Boukreeimi, S.Sadik and J. L. Lazzari “Electrical determination of band offsets in a p–Ga0.77In0.23As0.20Sb0.80/n–GaSb type–II heterojunction,”J. Appl. Phys., vol. 73, 2360–2363 (193)
[18] S. R. Forrest, P. H. Schmidt, R. B. Wilson, and M. L. Kaplan, “Relationship between the conduction–band discontinuities and band–gap differences of InGaAsP/InP heterojunctions,” Appl. Phys. Lett. vol. 45, pp.1199–1202, 1984
[19] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 73, pp. 2799–2801, 1998.
[20] M. Peter, N. Herres, F. Fuchs, K.Winkler, K.–H. Bachem, and J.Wagner, “Band gaps and band offsets in strained GaAsSb on InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 410–412,1999.
[21] C. R. Bolognesi, M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP double HBTs: a new alternative for InP–based DHBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2631–2639, 2001.
[22] W. Snodgrass, B. Wu, W. Hafez, K. Y. Cheng, and M. Feng, “Graded base type–II InP/GaAsSb DHBT with fT = 475 GHz,” IEEE Electron Device Lett., vol. 27, no. 2, pp. 84–86, Feb. 2006.
[23] R. Kaspi and K. R. Evans, “Sb–surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface,” J.Crystal Growth., vol. 175/176, pp. 838–843, 1997.
[24] S.D. Wu, L. W. Guo, W. X. Wang, Z. H. Li, X. Z. Shang, H. Y. Hu, Q. Huang, J. M. Zhou, “The incorporation behavior of arsenic and antimony in GaAsSb/GaAs grown by solid source molecular beam epitaxy,” J.Crystal Growth., vol. 270, pp. 359–363, 2004.
[25] M. Levinshtein, S. Rumyantsev and M. Shur, Hand book series on semiconductor parameters, (World Scientific, Singapore, 1996).
[26] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (Wiley–Interscience 1998).
[27] B. R. Wu, W. Snodgrass, W. Hafez, M. Feng and K. Y. Cheng, “Ultra–high speed composition graded InGaAsSb/GaAsSb DHBTs with fT=500 GHz grown by gas–source molecular beam epitaxy,” Proc. IPRM 2006, pp. 89–91, 2006.
[28] J. J. Ebers and J. L. Moll, Proc. Inst. Radio Eng. 42, 1761, 1954.
[29] S. C. Lee, J. N. Kau, and H. H. Lin, “Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 45, pp. 1114–1116, 1984.
[30] J. H. Tsai, S. Y. Cheng, L. W. Laih, W. C. Liu, and H. H. Lin “An extremely low offset voltage AlInAs/GaInAs heterostructure–emitter bipolar transistor,” Superlattices and Microstructures., vol. 23, pp. 1297–1307, 1998.
[31] H. Fukano, H. Nakajima, T. Ishibashi, Y. Takanashi, M. Fujimoto, “Effect of hot–electron injection on high–frequency characteristics of abrupt In0.52 (Al,Ga)0.48As/InGaAs HBT’s,” IEEE Trans. Electron Devices, vol. 39, pp. 500–506, 1992.
[32] C. R. Bolognesi, H. G. Liu, N. Tao, X. Zhang, S. Bagheri-Najimi, and S. P. Watkins, “Neutral base recombination in InP/GaAsSb/InP double heterostructure bipolar transistors: Suppression of Auger recombination in p+ GaAsSb base layers,” Appl. Phys. Lett., vol. 86, 253506, 2005.
[33] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide–based compound semiconductors for electronic devices: A review,” Solid State Electron., vol. 49, pp.1875–1895, 2005.
[34] J. Singh, Electronic and optoelectronic properties of semiconductor structures, (Cambridge, London, 2003).
[35] J. Minch, S. H. Park, T. Keating, and S. L. Chuang; IEEE J. Quantum Electron., vol. 35, 771–782 (1999)
[36] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York.: Wiley, 1981).
[37] D. A. Neamen, Semiconductor physics and devices, 3nd ed. (McGraw-Hill, San Fransisco, 2003).
[38] H. Wang, C. Wah Ng, K. Radhakrishnan and G. I. Ng, “Current transport mechanism in InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors,” Proc. IPRM 2007, pp. 147–150, 2007.
[39] W. Liu, S. K. Fan, T. S. Kim, E. A. Beam III, D. B. Davito, “Current transport mechanism in GaInP/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1378–1383, 1993.
[40] M. Yee and P. A. Houston, “High current effects in double heterojunction bipolar transistors,” Semicond. Sci. Technol, vol. 20, pp. 412–417, Mar. 2005.
[41] M. Lundstrom, Fundamentals of Carrier Transport. Cambridge, U.K.: Cambridge University Press, 2000, pp. 326–327.
[42] T. Kaneto, K. W. Kim, and M. A. Littlejohn, “A comparison of minority electron transport in In0.53Ga0.47As and GaAs,” Appl. Phys. Lett., vol. 63, pp.48–50, Jul. 1995.
[43] Z. Griffith, E. Lind, and M. J.W. Rodwell, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fMax and 416 GHz fT,” Proc. IPRM 2007, pp. 403–406, 2007.
[44] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, “High–current–gain InP/GaInP/GaAsSb/InP DHBTs With fT = 436 GHz,” IEEE Electron Device Lett., vol. 28, no. 10, pp. 852–856, Aug. 2007.
[45] S.W. Cho, J.H. Yun, D.H. Jun, J.I. Song, I. Adesida, N. Pan, and J.H. Jang, “High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors,” Solid State Electron., vol. 50, pp.902–907, 2005.
[46] D. Vignaud, J. F. Lampin, E. Lefebvre, M. Zaknoune, and F. Mollot, “Electron lifetime of heavily Be-doped In0.53Ga0.47As as a function of growth temperature and doping density,” Appl. Phys. Lett., vol. 80, pp.4151–4153, 3. Jun. 2002.
[47] I. Suemune, “Auger effects in acceptor–doped long–wavelength strained quantum well lasers,” Appl. Phys. Lett., vol. 55, pp.2579–2581, 18. Dec. 1989.
[48] M. C. Wang, K. Kash, C. E. Zah, F. L. Bhat, and S. L. Chuang, “Measurement of nonradiative Auger and radiative recombination rates in strained–layer quantum-well systems,” Appl. Phys. Lett., vol. 62, pp.166–169, 11. Jan. 1993.
[49] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded–Base and fT × BVCEO > 2.5 THz–V at Room Temperature,” pp.667–670, IEDM, 2007. |