博碩士論文 110226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.59.187
姓名 林金蔚(Chin-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低限制氮化矽波導之高品質因子微環形共振腔製程研究
(Fabrication of high-Q micro-ring resonators with low-confined silicon nitride waveguides)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 可重構SU-8之波導製程與量測研究★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究
★ 微環形共振腔非線性效應與壓縮光之研究★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製
★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究
★ 耦合共振腔光波導頻寬優化研究★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究
★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今,積體光路(PICs)已被廣泛應用在不同的科技領域,特別是矽光子技術。由於矽光子技術與互補式金屬氧化物半導體(CMOS)製程技術具有高度兼容性和高集成密度的特點,因此被廣泛視為下一代計算解決方案的基礎。在所有的光學元件中,微環形共振腔在PICs扮演重要的角色,包括濾波、調製和檢測等光學功能。對於微環形共振腔來說,品質因子(Q)是決定性能的關鍵參數。在傳統上,品質因子會受到波導材料的吸收損耗以及製程缺陷引起的散射損耗所限制,例如波導的表面粗糙度和側壁垂直度。由於傳統的高限制波導的波導模態主要在導光層中傳輸,為了追求更高的品質因子,本論文降低了導光層的限制,使波導模態能夠與高品質的披覆層大幅重疊,而讓模態在高品質披覆層的有效面積能遠大於傳統的高限制波導。此外,由於較薄的導光層,蝕刻深度較淺,故能更好地控制蝕刻過程。因此,具有較薄導光層的低限制波導有助於降低波導材料的吸收損耗和側壁粗糙度引起的散射損耗。在本論文中,我們使用導光層厚度為100 nm的低限制氮化矽波導,不僅可以實現小於1 mm的彎曲半徑,還達到比毫米級共振腔更高的集成密度。
為了實現最佳的結構設計以降低傳輸損耗,本論文透過RSoft模擬軟體中的FemSIM來研究在不同披覆層的材料下,低限制波導的光消逝深度,確保絕緣層厚度足以防止能量傳至矽基板,並透過RSoft模擬軟體中的BeamPROP來研究在二氧化矽披覆層下,低限制環形波導的彎曲損耗,以此設計最佳的環形波導半徑。在實驗上,為了找出最佳的製程方法以降低波導的材料吸收損耗和散射損耗,本論文嘗試不同的製程方法,包含氮化矽薄膜的沉積方法、披覆層的沉積參數以及是否進行熱退火。
綜合以上探討並驗證不同參數後,實現高品質因子、低損耗的微環形共振腔,其品質因子高達1.2×10⁶、傳輸損耗降低至0.22 dB/cm,且具有可調製性。
本論文提供一個低限制波導的設計和較佳的製程方法,以實現高品質因子、低損耗的微環形共振腔。
摘要(英) Recently, photonic integrated circuits (PICs), especially silicon photonics, have been applied widely in various technologies. Due to their exceptional compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes and remarkable integration density, PICs are generally regarded as the cornerstone of next-generation computing solutions. Among all the photonic devices, micro-ring resonators play an important role in PICs, offering optical functionalities such as filtering, modulation, and detection. For micro-ring resonators, the quality factor(Q) is a critical parameter determining performance. Traditionally, the Q factor is limited by waveguide material absorption and scattering loss from the imperfections of the fabrication processes, such as waveguide roughness and sidewall angles. In pursuit of a high Q factor, lightly confining the waveguide mode in the core layer permits the mode field to propagate with significant overlap with the high-quality cladding layer while the effective area of the mode field is much larger than the conventional tightly confined waveguide, in which the mode field is mostly confined in the core layer. In addition, a thin core layer allows a better etching budget with a shallower etching depth. Therefore, low-confined waveguides with a thin core layer serve to minimize both the material loss from the waveguide core and the scattering loss induced by the sidewall roughness. In this thesis, we realize the low-confined Si₃N₄ waveguide with a core layer of 100 nm thickness, enabling a bending radius of less than 1 mm and providing a higher integration density than the millimeter-sized resonators.
To achieve optimal structural design and reduce transmission losses, this paper utilizes the FEMSIM module in RSoft simulation software to investigate the light extinction depth of low-confinement waveguides under different cladding materials. This ensures that the thickness of the insulating layer is sufficient to prevent energy from reaching the silicon substrate. Additionally, through the BeamPROP module in the RSoft simulation software, this paper studies the bending losses of low-confinement ring waveguides under a silicon dioxide cladding layer, aiming to design the optimal radius for the ring waveguide. In experimental investigations, various processing methods are explored to identify the best practices for reducing material absorption and scattering losses in the waveguide. This includes different deposition techniques for silicon nitride film, deposition parameters for the cladding layer, and the impact of thermal annealing.
By integrating and validating various parameters discussed above, we have achieved a high-quality factor, low-loss micro-ring resonator. The quality factor reaches up to 1.2×10⁶, with a reduced transmission loss of 0.22 dB/cm. Moreover, the micro-ring resonator exhibits tunability.
This paper presents a design of low-confinement waveguide and optimal fabrication methods to achieve a high-quality factor, low-loss micro-ring resonator.
關鍵字(中) ★ 矽光子
★ 低限系光子
★ 高品質因子
★ 微環形共振腔
★ 氮化矽
關鍵字(英) ★ Silicon photonics
★ Low-confined waveguides
★ High quality factor
★ Micro-ring resonators
★ Silicon nitride
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XIV
第1章 緒論 1
1-1 矽光子 1
1-2 微環形共振腔 1
1-3 氮化矽之材料特性 3
1-4 研究動機 4
1-5 論文概要 6
第2章 微環形共振腔結構之模擬 8
2-1 模擬工具與原理 8
2-1-1 有限元素法 (Finite Element Method, FEM) 9
2-1-2 光束傳播法 (Beam Propagation Method, BPM) 9
2-2 不同氮化矽波導厚度的光消逝深度之模擬 10
2-2-1 空氣披覆層 10
2-2-2 二氧化矽披覆層 18
2-2-3 不同材料披覆層的影響 26
2-3 不同氮化矽波導厚度的波導模態數之模擬 27
2-4 低限制環形波導的彎曲損耗之模擬 28
第3章 微環形共振腔之製程 30
3-1 製程流程 30
3-2 絕緣層之沉積 31
3-3 氮化矽薄膜製程 34
3-3-1 LPCVD氮化矽薄膜之表面粗糙度 37
3-4 黃光微影製程 37
3-4-1 曝光機 39
3-5 蝕刻製程 40
3-6 披覆層之沉積 43
3-7 熱退火製程 45
3-8 熱調製之製程 46
第4章 微環形共振腔之量測 48
4-1 品質因子之計算 48
4-2 傳輸頻譜之量測架構 50
4-3 影響品質因子之變因 51
4-3-1 不同沉積方法之氮化矽薄膜 51
4-3-2 不同限制程度之氮化矽波導 54
4-3-3 不同披覆層厚度之低限制波導 61
4-3-4 不同絕緣層厚度之低限制波導 62
4-3-5 不同沉積參數之披覆層 64
4-3-6 不同波導表面粗糙度下不同限制程度之氮化矽波導 67
4-3-7 熱退火前後之低限制波導 68
4-4 熱調製之量測 70
第5章 結論與未來展望 71
參考文獻 73
參考文獻 [1] A. H. Atabaki et al., "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, vol. 556, no. 7701, pp. 349-354, 2018.
[2] G. Sinatkas, T. Christopoulos, O. Tsilipakos, and E. E. Kriezis, "Electro-optic modulation in integrated photonics," Journal of Applied Physics, vol. 130, no. 1, 2021.
[3] B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, K. H. Lee, and S. F. Yoon, "Monolithic integration of InSb photodetector on silicon for mid-infrared silicon photonics," ACS Photonics, vol. 5, no. 4, pp. 1512-1520, 2018.
[4] S. Lischke et al., "Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz," Nature Photonics, vol. 15, no. 12, pp. 925-931, 2021.
[5] M. Tang et al., "Integration of III-V lasers on Si for Si photonics," Progress in Quantum Electronics, vol. 66, pp. 1-18, 2019.
[6] F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. Jaeger, "Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends," Optics Letters, vol. 42, no. 2, pp. 235-238, 2017.
[7] W. Deng et al., "Silicon-Based Integrated Terahertz Polarization Beam Splitters," Journal of Lightwave Technology, vol. 40, no. 1, pp. 170-178, 2022.
[8] W. Bogaerts et al., "Silicon-on-insulator spectral filters fabricated with CMOS technology," IEEE journal of selected topics in quantum electronics, vol. 16, no. 1, pp. 33-44, 2010.
[9] W. Bogaerts et al., "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," Journal of Lightwave Technology, vol. 23, no. 1, p. 401, 2005.
[10] T. Nagatsuma, G. Ducournau, and C. C. Renaud, "Advances in terahertz communications accelerated by photonics," Nature Photonics, vol. 10, no. 6, pp. 371-379, 2016.
[11] K. Sengupta, T. Nagatsuma, and D. M. Mittleman, "Terahertz integrated electronic and hybrid electronic–photonic systems," Nature Electronics, vol. 1, no. 12, pp. 622-635, 2018.
[12] Y. Yang et al., "Terahertz topological photonics for on-chip communication," Nature Photonics, vol. 14, no. 7, pp. 446-451, 2020.
[13] M. C. Estevez, M. Alvarez, and L. M. Lechuga, "Integrated optical devices for lab‐on‐a‐chip biosensing applications," Laser & Photonics Reviews, vol. 6, no. 4, pp. 463-487, 2012.
[14] C. Chen and J. Wang, "Optical biosensors: An exhaustive and comprehensive review," Analyst, vol. 145, no. 5, pp. 1605-1628, 2020.
[15] Y.-L. Xu et al., "Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice," Nature communications, vol. 7, no. 1, p. 11319, 2016.
[16] L. Feng, R. El-Ganainy, and L. Ge, "Non-Hermitian photonics based on parity–time symmetry," Nature Photonics, vol. 11, no. 12, pp. 752-762, 2017.
[17] W. Bogaerts et al., "Compact wavelength-selective functions in silicon-on-insulator photonic wires," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1394-1401, 2006.
[18] C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, "Graphene electro-optic modulator with 30 GHz bandwidth," Nature photonics, vol. 9, no. 8, pp. 511-514, 2015.
[19] R. Maiti et al., "Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits," Nature Photonics, vol. 14, no. 9, pp. 578-584, 2020.
[20] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, "Silicon nitride in silicon photonics," Proceedings of the IEEE, vol. 106, no. 12, pp. 2209-2231, 2018.
[21] S. Gundavarapu et al., "Sub-hertz fundamental linewidth photonic integrated Brillouin laser," Nature Photonics, vol. 13, no. 1, pp. 60-67, 2019.
[22] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," nature photonics, vol. 13, no. 3, pp. 158-169, 2019.
[23] X. Ji et al., "Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold," Optica, vol. 4, no. 6, pp. 619-624, 2017.
[24] S. Cui, K. Cao, Y. Yu, and X. Zhang, "Ultra-high-Q racetrack microring based on silicon-nitride," arXiv preprint arXiv:2209.01097, 2022.
[25] M. Sinclair et al., "1.4 million Q factor Si 3 N 4 micro-ring resonator at 780 nm wavelength for chip-scale atomic systems," Optics express, vol. 28, no. 3, pp. 4010-4020, 2020.
[26] M. W. Puckett et al., "422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth," Nature communications, vol. 12, no. 1, p. 934, 2021.
[27] I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," Josa, vol. 55, no. 10, pp. 1205-1209, 1965.
[28] K. Luke, Y. Okawachi, M. R. Lamont, A. L. Gaeta, and M. Lipson, "Broadband mid-infrared frequency comb generation in a Si 3 N 4 microresonator," Optics letters, vol. 40, no. 21, pp. 4823-4826, 2015.
[29] "https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-femsim.html."
[30] M. Mansuripur, E. M. Wright, and M. Fallahi, "The beam propagation method," Optics and Photonics News, vol. 11, no. 7, pp. 42-48, 2000.
[31] M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T. Sullivan, "Fabrication techniques for low-loss silicon nitride waveguides," in Micromachining Technology for Micro-Optics and Nano-Optics III, 2005, vol. 5720, pp. 109-118: SPIE.
[32] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Optics Express, vol. 15, no. 17, pp. 10553-10561, 2007.
[33] S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, "Silicon photonics: from a microresonator perspective," Laser & photonics reviews, vol. 6, no. 2, pp. 145-177, 2012.
[34] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Optics letters, vol. 29, no. 24, pp. 2861-2863, 2004.
[35] X. Ji, S. Roberts, M. Corato-Zanarella, and M. Lipson, "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics, vol. 6, no. 7, 2021.
[36] Y. Xuan et al., "High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation," Optica, vol. 3, no. 11, pp. 1171-1180, 2016.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2023-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明