博碩士論文 110226016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.188.40.207
姓名 徐子洋(Tzu-Yang Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非接觸式漫反射光譜搭配主成分分析進行瘀傷年齡判定
(Determination of bruise age based on non-contact diffuse reflection spectroscopy with principal component analysis.)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-12以後開放)
摘要(中) 本實驗的目的為開發一套非接觸式的漫反射光譜量測系統,透過量測瘀傷皮膚的漫反射數據搭配主成分分析的技術,進行瘀傷年齡的判定。本實驗招募來自中央大學校內20到24歲擁有瘀傷的受試者(不限男女),會對受試者的瘀傷皮膚與正常皮膚進行漫反射光譜的追蹤量測,追蹤量測將會持續到患部康復為止,以搜集從瘀傷初期至康復後的漫反射光譜數據,並透過差異光譜(瘀傷與正常皮膚的光譜數據比值)搭配主成分分析,取得主成分後將受試者的瘀傷數據對各主成分進行投影,即可從瘀傷數據投影後的分佈位置來區分不同時期的瘀傷,以此方式進行瘀傷年齡的判定。
除此之外,本實驗將主成分設計成濾波片,並模擬受試者數據與濾波片投影後的結果,發現同樣能夠觀察投影量的分佈位置與變化趨勢進行瘀傷年齡判定,同時也會將這些代表不同天數的瘀傷投影量數據,當作迴歸分析的基底,建構出瘀傷年齡判定的時間模型,而將主成分設計成濾波片則是為了本實驗的未來目標:建構出一套非接觸式影像量測系統,建構基礎。
摘要(英) The purpose of this experiment is to develop a non-contact diffuse reflectance spectroscopy measurement system for determining the age of bruises. By measuring the diffuse reflectance data of bruised skin and applying principal component analysis (PCA) techniques, we aim to determine the age of bruises. This experiment recruit participants aged 20 to 24 with bruises from within National Central University. We will track the diffuse reflectance spectroscopy of the participants′ bruised skin and normal skin. The tracking measurements will continue until the bruises have healed, allowing us to collect diffuse reflectance spectroscopy data from the early stages of bruising to recovery.
We will use difference ratio spectrum (the ratio of spectral data between bruised and normal skin) along with PCA to obtain principal components. These principal components will then be used to project the participants′ bruise data. The distribution of the projected bruise data will be used to differentiate between bruises at different stages, enabling us to determine the age of the bruises.
In addition, this experiment will design the principal components as filter sets. We will simulate the participants′ data and the results after projection through the filter sets. This will allow us to observe the distribution and trends of the projected data and determine the age of the bruises. Furthermore, the projected data representing different days of bruising will be used as the basis for regression analysis to construct a time model for determining the age of bruises. The design of the principal components as filter sets serves the future goal of this experiment: to build a non-contact imaging measurement system as a foundation.
關鍵字(中) ★ 瘀傷 關鍵字(英) ★ Bruise
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XIII
1 一、緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-2-1 人體瘀傷相關研究 2
1-2-2 接觸式漫反射光譜相關研究 5
1-2-3 非接觸式漫反射光譜相關研究 8
1-2-4 主成分分析相關研究 10
1-3 論文架構 12
2 二、實驗原理與分析方法 13
2-1 漫反射光學原理 13
2-2 人體皮膚的分層 17
2-3 主成分分析原理 20
2-4 迴歸分析原理 24
3 三、實驗方法 26
3-1 系統設計及架構 26
3-1-1 二維影像拍攝 26
3-1-2 接觸式漫反射光譜量測系統 26
3-1-3 非接觸式漫反射光譜量測系統 28
3-1-4 光譜儀校正 29
3-1-5 白平衡校正與反射率光譜計算 31
3-2 人體試驗計畫 32
3-2-1 瘀傷受試者挑選 32
3-2-2 實驗流程 33
4 四、實驗結果與討論 34
4-1 受試者數據說明 34
4-2 患部二維影像與CIE LAB色彩空間 35
4-3 漫反射光譜與差異光譜 38
4-4 差異光譜之主成分分析與投影 43
4-5 高斯過程迴歸分析I 54
4-6 濾波片設計與投影量分析 58
4-7 高斯過程迴歸分析II 66
5 五、結論 74
6 參考文獻 76
參考文獻 [1] G. J. Davis, "Patterns of injury: blunt and sharp," Clinics in laboratory medicine, vol. 18, no. 2, pp. 339-350, 1998.
[2] N. Langlois and G. Gresham, "The ageing of bruises: a review and study of the colour changes with time," Forensic Science International, vol. 50, no. 2, pp. 227-238, 1991.
[3] J. W. McMurdy, S. Duffy, and G. P. Crawford, "Monitoring bruise age using visible diffuse reflectance spectroscopy," in Optical Tomography and Spectroscopy of Tissue VII, 2007, vol. 6434: SPIE, pp. 351-358.
[4] J. Glaister, "Medical jurisprudence and toxicology," (No Title), 1957.
[5] J. Raekallio, "Timing of the wound," Forensic medicine: a study in trauma and environmental hazards, vol. 1, pp. 22-28, 1977.
[6] F. E. Camps and B. Lucas, Gradwohl′s legal medicine. Chicago: John Wright, 1976, 1976.
[7] W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan‐Jansen, "In Vivo Brain Tumor Demarcation Using Optical Spectroscopy¶," Photochemistry and photobiology, vol. 73, no. 4, pp. 396-402, 2001.
[8] J. Hoffmann, D. Lübbers, and H. Heise, "Applicability of the Kubelka-Munk theory for the evaluation of reflectance spectra demonstrated for haemoglobin-free perfused heart tissue," Physics in Medicine & Biology, vol. 43, no. 12, p. 3571, 1998.
[9] I. Georgakoudi et al., "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett′s esophagus," Gastroenterology, vol. 120, no. 7, pp. 1620-1629, 2001.
[10] A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, "In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry," Journal of biomedical optics, vol. 16, no. 2, pp. 020501-020501-3, 2011.
[11] A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, "In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry," Cancer research, vol. 72, no. 11, pp. 2738-2745, 2012.
[12] E. Borisova, E. Pavlova, T. Kundurjiev, P. Troyanova, T. Genova, and L. Avramov, "Light-induced autofluorescence and diffuse reflectance spectroscopy in clinical diagnosis of skin cancer," in Biophotonics: Photonic Solutions for Better Health Care IV, 2014, vol. 9129: SPIE, pp. 251-258.
[13] G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Optics express, vol. 14, no. 19, pp. 8661-8674, 2006.
[14] A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, "In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy," Optics letters, vol. 29, no. 10, pp. 1087-1089, 2004.
[15] V. K. Hughes, P. S. Ellis, T. Burt, and N. E. I. Langlois, "The practical application of reflectance spectrophotometry for the demonstration of haemoglobin and its degradation in bruises," Journal of Clinical Pathology, vol. 57, no. 4, pp. 355-359, Apr 2004, doi: 10.1136/jcp.2003.011445.
[16] O. Kim, J. McMurdy, C. Lines, S. Duffy, G. Crawford, and M. Alber, "Reflectance spectrometry of normal and bruised human skins: experiments and modeling," Physiological measurement, vol. 33, no. 2, p. 159, 2012.
[17] L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, "A novel approach to age determination of traumatic injuries by reflectance spectroscopy," Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, vol. 38, no. 4, pp. 277-289, 2006.
[18] S. Prahl. "Optical Absorption of Hemeglobin." https://omlc.org/spectra/hemoglobin/ (accessed October 16, 2023).
[19] D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, "Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation," Journal of Physics D: Applied Physics, vol. 36, no. 14, p. 1722, 2003.
[20] B. Majaron, M. Milanič, and J. Premru, "Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries," Journal of Biomedical Optics, vol. 20, no. 1, pp. 015002-015002, 2015.
[21] S. K. Singh, R. Kurfurst, C. Nizard, S. Schnebert, E. Perrier, and D. J. Tobin, "Melanin transfer in human skin cells is mediated by filopodia—a model for homotypic and heterotypic lysosome‐related organelle transfer," The FASEB Journal, vol. 24, no. 10, pp. 3756-3769, 2010.
[22] N. Verdel, J. Tanevski, S. Džeroski, and B. Majaron, "A machine-learning model for quantitative characterization of human skin using photothermal radiometry and diffuse reflectance spectroscopy," in Photonics in Dermatology and Plastic Surgery 2019, 2019, vol. 10851: SPIE, p. 1085107.
[23] E. Angelopoulou, "Understanding the color of human skin," in Human vision and electronic imaging VI, 2001, vol. 4299: SPIE, pp. 243-251.
[24] B. Bodanese, F. L. Silveira, R. A. Zângaro, M. T. T. Pacheco, C. A. Pasqualucci, and L. Silveira Jr, "Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis," Photomedicine and laser surgery, vol. 30, no. 7, pp. 381-387, 2012.
[25] Ducksters. "Physics for Kids: Behavior of Light as a Wave. ." https://www.ducksters.com/science/physics/light_as_a_wave.php (accessed October 9, 2023).
[26] C. Ash, M. Dubec, K. Donne, and T. Bashford, "Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods," Lasers in medical science, vol. 32, pp. 1909-1918, 2017.
[27] H. Concepts. "Blue sky and Rayleigh Scattering." Georgia State University. http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html (accessed October 10, 2023).
[28] BYJU’s. "Visible Light." https://byjus.com/physics/the-electromagnetic-spectrum-visible-light/ (accessed October 10, 2023).
[29] K. Fuwa and B. Valle, "The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law," Analytical Chemistry, vol. 35, no. 8, pp. 942-946, 1963.
[30] C. Clinic. "Skin: Layers, Structure and Function." https://my.clevelandclinic.org/health/body/10978-skin (accessed October 10, 2023).
[31] D. Ramadon. "Enhancement strategies for transdermal drug delivery systems: current trends and applications." https://www.researchgate.net/figure/Schematic-representation-of-epidermis-layer-of-human-skin_fig3_348644834 (accessed October 10, 2023).
[32] B. Bodanese, L. Silveira Jr, R. Albertini, R. A. Zangaro, and M. T. T. Pacheco, "Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models," Photomedicine and laser surgery, vol. 28, no. S1, pp. S-119-S-127, 2010.
[33] I. H. Boyacı, H. T. Temiz, R. S. Uysal, H. M. Velioğlu, R. J. Yadegari, and M. M. Rishkan, "A novel method for discrimination of beef and horsemeat using Raman spectroscopy," Food chemistry, vol. 148, pp. 37-41, 2014.
[34] J. M. Kainerstorfer et al., "Principal component model of multispectral data for near real-time skin chromophore mapping," Journal of Biomedical Optics, vol. 15, no. 4, pp. 046007-046007-9, 2010.
[35] Y. Miyamae, Y. Yamakawa, M. Kawabata, and Y. Ozaki, "A combined near-infrared diffuse reflectance spectroscopy and principal component analysis method of assessment for the degree of photoaging and physiological aging of human skin," Analytical Sciences, vol. 28, no. 12, pp. 1159-1164, 2012.
[36] D. Y. Tzeng and R. S. Berns, "A review of principal component analysis and its applications to color technology," Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, vol. 30, no. 2, pp. 84-98, 2005.
[37] A. Daffertshofer, C. J. Lamoth, O. G. Meijer, and P. J. Beek, "PCA in studying coordination and variability: a tutorial," Clinical biomechanics, vol. 19, no. 4, pp. 415-428, 2004.
[38] J. Shlens, "A tutorial on principal component analysis," arXiv preprint arXiv:1404.1100, 2014.
[39] L. I. Smith, "A tutorial on principal components analysis," 2002.
[40] P. Andrea Bellavia. "Principal component analysis | Statistical Methods for Environmental Mixtures." https://learnche.org/pid/latent-variable-modelling/principal-component-analysis/geometric-explanation-of-pca. (accessed October 11, 2023).
[41] T. Huang. "機器/統計學習:主成分分析(Principal Component Analysis, PCA)." https://chih-sheng-huang821.medium.com/機器-統計學習-主成分分析-principle-component-analysis-pca-58229cd26e71 (accessed October 11, 2023).
[42] E. Schulz, M. Speekenbrink, and A. Krause, "A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions," Journal of Mathematical Psychology, vol. 85, pp. 1-16, 2018.
[43] C. K. Williams, "Prediction with Gaussian processes: From linear regression to linear prediction and beyond," in Learning in graphical models: Springer, 1998, pp. 599-621.
[44] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning (no. 3). MIT press Cambridge, MA, 2006.
[45] A. G. Wilson, C. Dann, C. Lucas, and E. P. Xing, "The human kernel," Advances in neural information processing systems, vol. 28, 2015.
[46] C. E. Rasmussen, "Gaussian processes in machine learning," in Summer school on machine learning: Springer, 2003, pp. 63-71.
[47] C. E. Rasmussen and H. Nickisch, "Gaussian processes for machine learning (GPML) toolbox," The Journal of Machine Learning Research, vol. 11, pp. 3011-3015, 2010.
[48] M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, vol. 108, pp. 513-538, 2019.
[49] scikit-learn. "Gaussian Processes." https://scikit-learn.org/stable/modules/gaussian_process.html (accessed October 22, 2023).
[50] O. Insight. "Reflection/Backscatter Probes." https://www.oceaninsight.com/products/fibers-and-probes/probes/reflectionbackscatter-probes/qr600-7-vis-125f/ (accessed October 17, 2023).
[51] T. MedSpa. "FITZPATRICK SKIN TYPE CHART." https://www.tribecamedspa.com/fitzpatrick-skin-type-chart/ (accessed October 17, 2023).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2023-12-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明