博碩士論文 110226029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.129.23.30
姓名 黃頤楷(Yi-Kai Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
(Research on process integration and uniformity analysis of 6-inch wafers in nano-optical applications)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 可重構SU-8之波導製程與量測研究★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究
★ 微環形共振腔非線性效應與壓縮光之研究★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製
★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究
★ 耦合共振腔光波導頻寬優化研究★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究
★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究
★ 氮化矽微環型干涉儀製程與穿透頻譜調製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著通訊領域對於更高傳輸速率的要求日益增加,人們開始尋求比起傳統的銅線傳輸更具優勢的解決方案。在這方面,矽光子學的應用成為了一個受人矚目的選擇。矽光子學利用光波導技術,不僅具有更高的傳輸速率和更寬的頻寬,還能夠降低能量損耗。矽光子系統主要由光子電路和電子電路兩部分組成,以實現信號的傳輸和計算。首先,電訊號經過雷射調製器轉換為光訊號,然後通過光纖和光波導進行傳輸,最後由光接收器將光訊號轉換回電訊號。在光纖通訊中,高功率寬頻的光源,如光學放大器、拉曼雷射等,在通訊、醫學和光譜學等領域扮演著重要的角色。然而,在矽光子領域的多層次整合及低成本大量生產這個議題,是目前較為缺乏的,例如U-Groove(on-chip)結構、Heater(on-chip)結構,目前在製程整合上的研究都還處於雛形階段,更難以實行具有商業經濟效益的量產。在這項研究中,透過在 6 英寸全晶圓上使用經濟高效的 I-line步進微影技術整合波導微諧振器和U-Groove結構作為一個起始研究,未來可進一步使用8吋甚至12吋工藝,並整合更多元件結構。在研究中顯示,已實現低損耗氮化矽(SiN)波導微諧振器的品質(Q)因數高達105,成品之晶片能承受高功率且維持長時間穩定性。此外,波導微諧振器和U-Groove結構還能透過六吋全晶圓製程整合,提供耦合和封裝的長期穩定性解決方案,並在整個
II
晶圓內驗證了不同晶片區域的均勻性,顯示了所製造的矽光子裝置的良好品質。本研究顯示,這項光子元件的製程整合,可提供大規模生產、高產量和高均勻性製造的潛力。
摘要(英) With the increasing demand for higher transmission rates in the field of communications, people are searching for solutions that offer more advantages than traditional copper wire transmission. In this context, the application of silicon photonics has become an appealing option. Silicon photonics utilizes optical waveguide technology not only to achieve higher transmission rates and broader bandwidth but also to reduce energy loss. Silicon photonic systems are primarily composed of photonic circuits and electronic circuits to facilitate signal transmission and calculations.
To begin, the electrical signal is converted into an optical signal through a laser modulator, then transmitted via optical fiber and optical waveguide. Finally, the optical signal is reconverted into an electrical signal by an optical receiver. In optical fiber communications, high-power broadband light sources, such as optical amplifiers and Raman lasers, play pivotal roles in various fields including communications, medicine, and spectroscopy. However, multi-level integration and low-cost mass production in the realm of silicon photonics are currently underdeveloped. Aspects like the U-Groove (on-chip) structure, Heater (on-chip) structure, and ongoing research on process integration are still in their infancy. Furthermore, implementing mass production with commercial economic benefits is even more challenging.
In this study, we integrated waveguide micro-resonators and U-Groove structures using cost-effective I-line stepper lithography technology on a 6-inch full wafer
IV
as an initial exploration. This work can be extended in the future to employ 8-inch or even 12-inch processes and integrate additional component structures. In our research, we achieved a high quality (Q) factor of up to 105 for low-loss silicon nitride (SiN) waveguide micro-resonators. The completed chip can withstand high power and maintain long-term stability. Furthermore, the waveguide micro-resonator and U-Groove structure can be integrated through a six-inch full-wafer process, offering a long-term stability solution for coupling and packaging. This integration also verifies the uniformity of different chip areas across the wafer, ensuring the high quality of the silicon photonic devices manufactured. This process integration of photonic components holds the potential for mass production, high throughput, and uniform manufacturing.
關鍵字(中) ★ I-line 步進微影
★ 光波導
★ 製程整合
★ 波導微諧振器
★ U型溝槽
★ 6英吋晶圓工藝
關鍵字(英) ★ I-line stepper lithography
★ optical waveguide
★ process integration
★ waveguide micro-resonator
★ grooves
★ 6-inch wafer process
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 引言 1
1-2 矽光子氮化矽波導 1
1-3 傳統上的晶片結構及光纖對準 5
1-4 研究動機與目的 7
1-5 論文架構及研究方法 8
第二章 單層晶片製程 10
2-1 波導倒錐形結構設計與模擬 10
2-2 光波導之光罩設計製造 13
2-3 全片單層波導製程 (Layer One) 16
2-4 以全片方式快速測試曝光劑量方法 24
第三章 多層晶片製程整合 27
3-1 含有溝槽結構之晶片和製程方案 27
3-2 兩種方式製造分析 29
3-3 溝槽結構之光罩設計製造 31
3-4 多層結構之微影曝光對準方法 33
3-5 全片多層製程-波導層和溝槽層 34
3-6 Groove-Last 對準標記製程 (Layer Zero) 37
3-7 Groove-Last 溝槽製程 (Layer Two) 41
3-8 Groove-First 對準標記製程 (Layer Zero) 57
3-9 Groove-First 溝槽製程 (Layer One) 57
第四章 光學特性量測 60
4-1 光學特性量測系統方法及理論 60
4-2 晶圓品質因數均勻性量測 65
4-3 高功率穩定性量測 69
4-4 耦合損耗量測 70
第五章 分析與討論 76
5-1 製造方案彙整對比 76
5-2 未來展望 80
參考文獻 81
參考文獻 [1] Saha, S. K. (2010). Modeling process variability in scaled CMOS technology. IEEE Design & Test of Computers, 27(2), 8-16.
[2] Bangsaruntip, S., Majumdar, A., Cohen, G. M., Engelmann, S. U., Zhang, Y., Guillorn, M., ... & Sleight, J. W. (2010, June). Gate-all-around silicon nanowire 25-stage CMOS ring oscillators with diameter down to 3 nm. In 2010 symposium on VLSI technology (pp. 21-22). IEEE.
[3] Salehi, S., & DeMara, R. F. (2015, April). Energy and area analysis of a floating-point unit in 15nm cmos process technology. In SoutheastCon 2015 (pp. 1-5). IEEE.
[4] Bhushan, M., Gattiker, A., Ketchen, M. B., & Das, K. K. (2006). Ring oscillators for CMOS process tuning and variability control. IEEE Transactions on Semiconductor Manufacturing, 19(1), 10-18.
[5] Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J. L., ... & Monfray, S. (2000). Silicon-on-Nothing (SON)-an innovative process for advanced CMOS. IEEE Transactions on Electron Devices, 47(11), 2179-2187.
[6] Gordon, J. P., & Mollenauer, L. F. (1990). Phase noise in photonic communications systems using linear amplifiers. Optics letters, 15(23), 1351-1353.
[7] Paraiso, T. K., Roger, T., Marangon, D. G., De Marco, I., Sanzaro, M., Woodward, R. I., ... & Shields, A. J. (2021). A photonic integrated quantum secure communication system. Nature Photonics, 15(11), 850-856.
[8] Schall, D., Neumaier, D., Mohsin, M., Chmielak, B., Bolten, J., Porschatis, C., ... & Kurz, H. (2014). 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. Acs Photonics, 1(9), 781-784.
[9] Haque, E., Hossain, M. A., Ahmed, F., & Namihira, Y. (2018). Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sensors Journal, 18(20), 8287-8293.
[10] Vijaya Shanthi, K., & Robinson, S. (2014). Two-dimensional photonic crystal based sensor for pressure sensing. Photonic sensors, 4, 248-253.
[11] Shastri, B. J., Tait, A. N., Ferreira de Lima, T., Pernice, W. H., Bhaskaran, H., Wright, C. D., & Prucnal, P. R. (2021). Photonics for artificial intelligence and neuromorphic computing. Nature Photonics, 15(2), 102-114.
[12] Xu, Y., Zhang, X., Fu, Y., & Liu, Y. (2021). Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks. Photonics Research, 9(4), B135-B152.
[13] Lukin, D. M., Dory, C., Guidry, M. A., Yang, K. Y., Mishra, S. D., Trivedi, R., ... &
82
Vučković, J. (2020). 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nature Photonics, 14(5), 330-334. [14] Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., & Poon, A. W. (2012). Silicon photonics: from a microresonator perspective. Laser & photonics reviews, 6(2), 145-177.
[15] Pu, M., Liu, L., Ou, H., Yvind, K., & Hvam, J. M. (2010). Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Optics Communications, 283(19), 3678-3682.
[16] Baets, R., Subramanian, A. Z., Clemmen, S., Kuyken, B., Bienstman, P., Le Thomas, N., ... & Severi, S. (2016, March). Silicon photonics: Silicon nitride versus silicon-on-insulator. In Optical Fiber Communication Conference (pp. Th3J-1). Optica Publishing Group.
[17] Lee, B. H., Kang, C. J., Lee, J. H., Yu, S. I., Lee, K. W., Park, K. C., & Shim, T. E. (1995, October). A novel CMP method for cost-effective bonded SOI wafer fabrication. In 1995 IEEE International SOI Conference Proceedings (pp. 60-61). IEEE.
[18] Gaeta, A. L., Lipson, M., & Kippenberg, T. J. (2019). Photonic-chip-based frequency combs. nature photonics, 13(3), 158-169.
[19] Den Hartog, J. P. (1985). Mechanical vibrations. Courier Corporation.
[20] Moody, G., Chang, L., Steiner, T. J., & Bowers, J. E. (2020). Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Science, 2(4).
[21] Xuan, Y., Liu, Y., Varghese, L. T., Metcalf, A. J., Xue, X., Wang, P. H., ... & Qi, M. (2016). High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3(11), 1171-1180.
[22] Luke, K., Kharel, P., Reimer, C., He, L., Loncar, M., & Zhang, M. (2020). Wafer-scale low-loss lithium niobate photonic integrated circuits. Optics Express, 28(17), 24452-24458.
[23] Liu, J., Lucas, E., Raja, A. S., He, J., Riemensberger, J., Wang, R. N., ... & Kippenberg, T. J. (2020). Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics, 14(8), 486-491.
[24] Spencer, D. T., Bauters, J. F., Heck, M. J., & Bowers, J. E. (2014). Integrated waveguide coupled Si 3 N 4 resonators in the ultrahigh-Q regime. Optica, 1(3), 153-157.
[25] Ye, Z., Jia, H., Huang, Z., Shen, C., Long, J., Shi, B., ... & Liu, J. (2023). Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Research, 11(4), 558-568.
[26] Li, Z., Fan, Z., Zhou, J., Cong, Q., Zeng, X., Zhang, Y., & Jia, L. (2023). Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer. Applied Sciences, 13(6), 3660.
[27] Jin, W., Yang, Q. F., Chang, L., Shen, B., Wang, H., Leal, M. A., ... & Bowers, J. E. (2021).
83
Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nature Photonics, 15(5), 346-353. [28] Bauters, J. F., Heck, M. J., John, D. D., Barton, J. S., Bruinink, C. M., Leinse, A., ... & Bowers, J. E. (2011). Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Optics express, 19(24), 24090-24101.
[29] Hornung, M., Ji, R., Verschuuren, M., & van den Laar, R. (2010, August). 6 inch full field wafer size nanoimprint lithography for photonic crystals patterning. In 10th IEEE International Conference on Nanotechnology (pp. 339-342). IEEE.
[30] Kim, J. W., Chmielak, B., Lerch, H., & Plachetka, U. (2017). Fabrication of photonic integrated circuits in silicon nitride using substrate conformal imprint lithography. Microelectronic Engineering, 176, 11-14.
[31] Wang, P. H., Wang, S. P., Hou, N. L., Yang, Z. R., Huang, W. H., & Lee, T. H. (2023). Flexible dispersion engineering using polymer patterning in nanophotonic waveguides. Scientific Reports, 13(1), 13211.
[32] Yin, Y., Pinchbeck, J., O’Regan, C., Guiney, I., Wallis, D. J., & Lee, K. B. (2022). Fabrication of semi-polar (11-22) GaN V-groove MOSFET using wet etching trench opening technique. IEEE Electron Device Letters, 43(10), 1641-1644.
[33] Kremmel, J., Lamprecht, T., Crameri, N., & Michler, M. (2017). Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides. Optical Engineering, 56(2), 026115-026115.
[34] Galan, J. V., Sanchis, P., Marti, J., Marx, S., Schröder, H., Mukhopadhyay, B., ... & Zimmermann, L. (2009, September). CMOS compatible silicon etched V-grooves integrated with a SOI fiber coupling technique for enhancing fiber-to-chip alignment. In 2009 6th IEEE International Conference on Group IV Photonics (pp. 148-150). IEEE.
[35] Wang, P. H., Liu, H. C., Chen, H. Y., Zhong, Y. X., & Chen, K. H. (2022). CMOS-Compatible Silicon Etched U-Grooves With Groove-First Fabrication for Nanophotonic Applications. IEEE Photonics Technology Letters, 34(22), 1230-1233.
[36] Joshi, B. C., Eranna, G., Runthala, D. P., Dixit, B. B., Wadhawan, O. P., & Vyas, P. D. (2000). LPCVD and PECVD silicon nitride for microelectronics technology.
[37] Tai, Y. C., & Muller, R. S. (1988). Fracture strain of LPCVD polysilicon.
[38] 徐文祥. (2011). 以高分子作為感應偶合電漿反應離子蝕刻側壁保護層以製作單晶矽懸浮微結構之快速製程平台研發.
[39] Xiao, S., Khan, M. H., Shen, H., & Qi, M. (2007). Modeling and measurement of losses in silicon-on-insulator resonators and bends. Optics Express, 15(17), 10553-10561.
[40] Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. A. F. J., & Laine, J. P. (1997). Microring resonator channel dropping filters. Journal of lightwave technology, 15(6), 998-1005.
84
[41] Niehusmann, J., Vörckel, A., Bolivar, P. H., Wahlbrink, T., Henschel, W., & Kurz, H. (2004). Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics letters, 29(24), 2861-2863.
[42] Xu, Q., Schmidt, B., Pradhan, S., & Lipson, M. (2005). Micrometre-scale silicon electro-optic modulator. nature, 435(7040), 325-327.
[43] Niehusmann, J., Vörckel, A., Bolivar, P. H., Wahlbrink, T., Henschel, W., & Kurz, H. (2004). Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics letters, 29(24), 2861-2863.
[44] Wang, P. H., Lee, T. H., & Huang, W. H. (2023). Fabrication of tapered waveguides by i-line UV lithography for flexible coupling control. Optics Express, 31(3), 4281-4290.
[45] Sharif Azadeh, S., Mak, J. C., Chen, H., Luo, X., Chen, F. D., Chua, H., ... & Poon, J. K. (2023). Microcantilever-integrated photonic circuits for broadband laser beam scanning. Nature Communications, 14(1), 2641.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2024-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明