博碩士論文 110226048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.191.157.186
姓名 李建裕(Jian-Yu Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 銅基板特性對低壓化學氣相沉積生長 六方氮化硼之影響
(Effects of copper substrate characteristics on hexagonal boron nitride growth by Low Pressure Chemical Vapor deposition)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-2-1以後開放)
摘要(中) 六方氮化硼是一種優良的二維材料,其具有優異的導熱性、絕緣性以及寬能隙的特性。因為有二維材料中少數的高絕緣性,因此若能將高品質六方氮化硼轉印至二維半導體材料與傳統介電材料之間,就能改善懸鍵所導致的缺陷進而提升電子元件電性。
目前生長六方氮化硼薄膜大多以化學氣相沉積法於銅箔上,不過六方氮化硼的結晶品質跟銅基板的表面特性有很大的相關性,因此本研究藉由比較銅箔與濺鍍銅膜基板特性對低壓化學氣相沉積生長六方氮化硼的差異。
在本論文中分為銅箔基板以及銅膜基板兩個部分進行討論,銅箔基板部分探討退火參數對表面之影響,再探討不同前驅物量、氬氣流量、前驅物溫度以及基板是否通氫退火對六方氮化硼生長之影響。銅膜基板部分探討濺鍍參數對銅膜之影響,再探討不同藍寶石基板前處理方式對銅膜及六方氮化硼生長之影響。
最後本研究發現在相同的六方氮化硼生長條件下時,銅膜基板生長之六方氮化硼結晶比例高於銅箔生長之六方氮化硼結晶比例,表示表面平整且單晶的銅基板能提升六方氮化硼的結晶品質進而生長出高品質六方氮化硼薄膜。
摘要(英) Hexagonal boron nitride (h-BN) is an excellent two-dimensional material renowned for its exceptional thermal conductivity, insulation properties, and wide bandgap. Among the limited insulating materials of two-dimensional substances, transferring high-quality h-BN between two-dimensional semiconductor materials and traditional dielectric materials holds the potential to improve defects caused by dangling bonds, thereby enhancing the electrical performance of electronic components.
Currently, the growth of h-BN thin films is mainly achieved through chemical vapor deposition on copper foils. However, the crystalline quality of h-BN is closely related to the surface properties of the copper substrate. Consequently, this study aims to investigate the differences in the low pressure chemical vapor deposition growth of h-BN by comparing copper foils with sputtered copper film substrates.
The research is divided into two main sections: the copper foil substrate and the copper film substrate. In the copper foil substrate section, the study explores the influence of annealing parameters on the surface, followed by an investigation into the effects of different precursor amounts, argon flow rates, precursor temperatures, and the substrate with/without hydrogen annealing. In the copper film substrate section, the study in examines the influence of sputtering parameters on the copper film and subsequently investigates the effects of different sapphire substrate pretreatment methods on both the copper film and h-BN growth.
Finally, this study concludes that under identical h-BN growth conditions, the crystalline proportion of h-BN grown on copper film substrates is higher than that grown on copper foils. This indicates that a smooth and single-crystal copper substrate can enhance the crystalline quality of h-BN, thereby facilitating the growth of high-quality h-BN thin films.
關鍵字(中) ★ 六方氮化硼
★ 低壓化學氣相沉積
★ 濺鍍銅膜
★ sp2-氮化硼
★ 二維材料
關鍵字(英) ★ h-BN
★ Hexagonal Boron Nitride
★ LPCVD
★ sputtered copper film
★ sp2-BN
★ 2D materials
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
第二章 六方氮化硼理論 5
2-1 六方氮化硼結構與特性 5
2-2 六方氮化硼的製備方法 9
2-3 硼烷氨分解及六方氮化硼生長機制 22
第三章 實驗方法與儀器介紹 25
3-1 實驗方法與架構 25
3-1-1 基板清潔 25
3-1-2 濺鍍原理及濺鍍銅膜實驗步驟 26
3-1-3 LPCVD原理及生長h-BN實驗步驟 28
3-1-4 h-BN轉印方法流程 30
3-2 量測儀器 31
3-2-1 拉曼光譜儀 (Raman spectrometer) 31
3-2-2 紫外-可見光-近紅外分光光譜儀 (UV-VIS-NIR Spectrophotometer) 33
3-2-3 X-射線繞射儀 (X-ray diffractometer, XRD) 34
3-2-4 原子力顯微鏡 (Atomic Force Microscope, AFM) 35
3-2-5 表面輪廓儀 (Alpha-step profile meter) 35
3-2-6 場發射式掃描電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 36
3-2-7 背向散射電子繞射技術 (Electron Backscatter Diffraction Analysis, EBSD) 37
3-2-8 高解析雙束型聚焦離子束顯微鏡系統 (High-Resolution Dual-Beam Focus-Ion-Beam System, HR-Dual Beam FIB) 38
3-2-9 高解析掃描穿透式電子顯微鏡 (High Resolution Scanning Transmission Electron microscope, HR-STEM) 39
3-2-10 X-射線光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 40
3-3 碳汙染排除 42
第四章 銅箔基板生長六方氮化硼之結果 47
4-1 銅箔基板退火 47
4-2 六方氮化硼薄膜生長分析 51
4-2-1 前驅物量對六方氮化硼生長之影響 51
4-2-2 氬氣流量對六方氮化硼生長之影響 55
4-2-3 前驅物溫度對六方氮化硼生長之影響 61
4-2-4 通氫退火基板對六方氮化硼生長之影響 66
4-3 六方氮化硼薄膜光學特性分析 69
第五章 銅膜基板生長六方氮化硼之結果 71
5-1 銅膜製備 71
5-1-1 不同基板對於銅膜晶相之影響 72
5-1-2 不同功率對於銅膜晶相之影響 73
5-1-3 不同厚度對於銅膜晶相之影響 74
5-2 銅膜退火及六方氮化硼生長分析 77
5-2-1 銅膜退火參數及六方氮化硼生長特性 77
5-2-2 UV Ozone處理藍寶石基板之濺鍍銅膜 82
5-2-3 酸洗藍寶石基板之濺鍍銅膜 85
第六章 結論與未來工作 90
6-1 結論 90
6-2 未來工作 92
第七章 參考文獻 93
參考文獻 [1] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerjee, "Graphene and beyond-graphene 2D crystals for next-generation green electronics," in T. George, M. S. Islam, and A. K. Dutta, eds. (2014), p. 908305.
[2] P. Ajayan, P. Kim, and K. Banerjee, "Two-dimensional van der Waals materials," Phys. Today 69, 38–44 (2016).
[3] J. Zhang, B. Tan, X. Zhang, F. Gao, Y. Hu, L. Wang, X. Duan, Z. Yang, and P. Hu, "Atomically Thin Hexagonal Boron Nitride and Its Heterostructures," Adv. Mater. 33, 2000769 (2021).
[4] T. Chen, C. Chuu, C. Tseng, C. Wen, H.-S. P. Wong, S. Pan, R. Li, T. Chao, W. Chueh, Y. Zhang, Q. Fu, B. I. Yakobson, W. Chang, and L. Li, "Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)," Nature 579, 219–223 (2020).
[5] H. Koga, Y. Nakamura, M. Watanabe, and T. Yoshida, "Molecular dynamics study of deposition mechanism of cubic boron nitride," Sci. Technol. Adv. Mater. 2, 349–356 (2001).
[6] R. S. Pease, "Crystal Structure of Boron Nitride," Nature 165, 722–723 (1950).
[7] M. Lee, E. Lee, S. Byun, J. Kim, J. Yun, S. So, H. Lee, J. H. Pee, W. Shim, S.-P. Cho, J. Rho, J.-Y. Kim, and I. Chung, "r-BN: A fine hyperbolic dispersion modulator for bulk metamaterials consisting of heterostructured nanohybrids of h-BN and graphene," J. Solid State Chem. 309, 122937 (2022).
[8] W. Chen, J. T. Li, C. Ge, Z. Yuan, W. A. Algozeeb, P. A. Advincula, G. Gao, J. Chen, K. Ling, C. H. Choi, E. A. McHugh, K. M. Wyss, D. X. Luong, Z. Wang, Y. Han, and J. M. Tour, "Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating," Adv. Mater. 34, 2202666 (2022).
[9] O. Hod, "Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?," J. Chem. Theory Comput. 8, 1360–1369 (2012).
[10] R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, "Hunting for Monolayer Boron Nitride: Optical and Raman Signatures," Small 7, 465–468 (2011).
[11] J. Kang, L. Zhang, and S.-H. Wei, "A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors," J. Phys. Chem. Lett. 7, 597–602 (2016).
[12] K. Watanabe, T. Taniguchi, and H. Kanda, "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal," Nat. Mater. 3, 404–409 (2004).
[13] G. Cassabois, P. Valvin, and B. Gil, "Hexagonal boron nitride is an indirect bandgap semiconductor," Nat. Photonics 10, 262–266 (2016).
[14] C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil, and G. Cassabois, "Direct band-gap crossover in epitaxial monolayer boron nitride," Nat. Commun. 10, 2639 (2019).
[15] L. Schué, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe, T. Taniguchi, F. Ducastelle, A. Loiseau, and J. Barjon, "Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN," Phys. Rev. Lett. 122, 067401 (2019).
[16] T. N. Tran, R. S. Zeiger, S. P. Peters, G. Colice, P. Newbold, M. Goldman, and B. E. Chipps, "Overlap of atopic, eosinophilic, and TH2-high asthma phenotypes in a general population with current asthma," Ann. Allergy. Asthma. Immunol. 116, 37–42 (2016).
[17] R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L. H. G. Tizei, and A. Zobelli, "Bright UV Single Photon Emission at Point Defects in h-BN," Nano Lett. 16, 4317–4321 (2016).
[18] B. Gil, G. Cassabois, R. Cusco, G. Fugallo, and L. Artus, "Boron nitride for excitonics, nano photonics, and quantum technologies," Nanophotonics 9, 3483–3504 (2020).
[19] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, and D. N. Basov, "Photonics with hexagonal boron nitride," Nat. Rev. Mater. 4, 552–567 (2019).
[20] L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, "Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets," ACS Nano 8, 1457–1462 (2014).
[21] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, and P. M. Ajayan, "Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride," Nat. Commun. 4, 2541 (2013).
[22] I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, "Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride," Nano Lett. 13, 550–554 (2013).
[23] A. Laturia, M. L. Van De Put, and W. G. Vandenberghe, "Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk," Npj 2D Mater. Appl. 2, 6 (2018).
[24] Z. Cui, Y. He, H. Tian, A. Khanaki, L. Xu, W. Shi, and J. Liu, "Study of Direct Tunneling and Dielectric Breakdown in Molecular Beam Epitaxial Hexagonal Boron Nitride Monolayers Using Metal–Insulator–Metal Devices," ACS Appl. Electron. Mater. 2, 747–755 (2020).
[25] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, "Boron nitride substrates for high-quality graphene electronics," Nat. Nanotechnol. 5, 722–726 (2010).
[26] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, "Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature," Nano Lett. 11, 2396–2399 (2011).
[27] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, "Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures," Science 335, 947–950 (2012).
[28] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science 306, 666–669 (2004).
[29] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Natl. Acad. Sci. 102, 10451–10453 (2005).
[30] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes," Appl. Phys. Lett. 92, 133107 (2008).
[31] L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, and A. M. Glushenkov, "Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling," J. Mater. Chem. 21, 11862 (2011).
[32] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, "Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties," Adv. Mater. 21, 2889–2893 (2009).
[33] J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, and B. Büchner, "Atomic Resolution Imaging and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation," ACS Nano 4, 1299–1304 (2010).
[34] Y. Lin, T. V. Williams, and J. W. Connell, "Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets," J. Phys. Chem. Lett. 1, 277–283 (2010).
[35] W.-Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, "Structure of chemically derived mono- and few-atomic-layer boron nitride sheets," Appl. Phys. Lett. 93, 223103 (2008).
[36] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science 331, 568–571 (2011).
[37] X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, and G. Qian, "Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides," Adv. Mater. 25, 2200–2204 (2013).
[38] P. W. Sutter, P. M. Albrecht, and E. A. Sutter, "Graphene growth on epitaxial Ru thin films on sapphire," Appl. Phys. Lett. 97, 213101 (2010).
[39] P. Sutter, J. Lahiri, P. Zahl, B. Wang, and E. Sutter, "Scalable Synthesis of Uniform Few-Layer Hexagonal Boron Nitride Dielectric Films," Nano Lett. 13, 276–281 (2013).
[40] Q. Li, Q. Zhang, Y. Bai, H. Zhang, P. Hu, Y. Li, and F. Yun, "Deep-UV hexagonal boron nitride (hBN)/BAlN distributed Bragg reflectors fabricated by RF-sputtering," Opt. Mater. Express 11, 180 (2021).
[41] O. Cometto, B. Sun, S. Tsang, X. Huang, Y. Koh, and E. H. T. Teo, "Vertically self-ordered orientation of nanocrystalline hexagonal boron nitride thin films for enhanced thermal characteristics," Nanoscale 7, 18984–18991 (2015).
[42] H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, and L. Zhang, "Controlled Growth of Few‐Layer Hexagonal Boron Nitride on Copper Foils Using Ion Beam Sputtering Deposition," Small 11, 1542–1547 (2015).
[43] H. Wang, X. Zhang, H. Liu, Z. Yin, J. Meng, J. Xia, X. Meng, J. Wu, and J. You, "Synthesis of Large‐Sized Single‐Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition," Adv. Mater. 27, 8109–8115 (2015).
[44] M. Gao, J. Meng, Y. Chen, S. Ye, Y. Wang, C. Ding, Y. Li, Z. Yin, X. Zeng, J. You, P. Jin, and X. Zhang, "Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors," J. Mater. Chem. C 7, 14999–15006 (2019).
[45] N. R. Glavin, M. L. Jespersen, M. H. Check, J. Hu, A. M. Hilton, T. S. Fisher, and A. A. Voevodin, "Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition," Thin Solid Films 572, 245–250 (2014).
[46] M. Sajjad, H. X. Zhang, X. Y. Peng, and P. X. Feng, "Effect of substrate temperature in the synthesis of BN nanostructures," Phys. Scr. 83, 065601 (2011).
[47] P. X. Feng and M. Sajjad, "Few-atomic-layer boron nitride sheets syntheses and applications for semiconductor diodes," Mater. Lett. 89, 206–208 (2012).
[48] M. Fraga and R. Pessoa, "Progresses in Synthesis and Application of SiC Films: From CVD to ALD and from MEMS to NEMS," Micromachines 11, 799 (2020).
[49] J. Sun, C. Lu, Y. Song, Q. Ji, X. Song, Q. Li, Y. Zhang, L. Zhang, J. Kong, and Z. Liu, "Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition," Chem. Soc. Rev. 47, 4242–4257 (2018).
[50] H. O. Pierson, "Boron Nitride Composites By Chemical Vapor Deposition," J. Compos. Mater. 9, 228–240 (1975).
[51] M. T. Paffett, R. J. Simonson, P. Papin, and R. T. Paine, "Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces," Surf. Sci. 232, 286–296 (1990).
[52] R. J. Simonson, M. T. Paffett, M. E. Jones, and B. E. Koel, "A vibrational study of borazine adsorbed on Pt(111) and Au(111) surfaces," Surf. Sci. 254, 29–44 (1991).
[53] J. W. He and D. W. Goodman, "Interaction of borazine with a Re(0001) surface, studied by LEED, TDS, AES and ELS," Surf. Sci. 232, 138–148 (1990).
[54] H. Wang, Y. Zhao, Y. Xie, X. Ma, and X. Zhang, "Recent progress in synthesis of two-dimensional hexagonal boron nitride," J. Semicond. 38, 031003 (2017).
[55] W. Auwärter, "Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures," Surf. Sci. Rep. 74, 1–95 (2019).
[56] H. Zhu, J. Zhu, Z. Zhang, and R. Zhao, "Crossover from Linear Chains to a Honeycomb Network for the Nucleation of Hexagonal Boron Nitride Grown on the Ni(111) Surface," J. Phys. Chem. C 125, 26542–26551 (2021).
[57] Z. R. Robinson, S. W. Schmucker, K. M. McCreary, and E. D. Cobas, "Chemical Vapor Deposition of Two-Dimensional Crystals," in Handbook of Crystal Growth (Elsevier, 2015), pp. 785–833.
[58] P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, and S. Hofmann, "In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper," Chem. Mater. 26, 6380–6392 (2014).
[59] S. Frueh, R. Kellett, C. Mallery, T. Molter, W. S. Willis, C. King’ondu, and S. L. Suib, "Pyrolytic Decomposition of Ammonia Borane to Boron Nitride," Inorg. Chem. 50, 783–792 (2011).
[60] G. Kim, A. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, and H. S. Shin, "Growth of High-Crystalline, Single-Layer Hexagonal Boron Nitride on Recyclable Platinum Foil," Nano Lett. 13, 1834–1839 (2013).
[61] G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, and M. Jiang, "Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy," Nat. Commun. 6, 6160 (2015).
[62] X. Song, Q. Li, J. Ji, Z. Yan, Y. Gu, C. Huo, Y. Zou, C. Zhi, and H. Zeng, "A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene," 2D Mater. 3, 035007 (2016).
[63] 江仲鈞, "利用低壓化學氣相沉積於矽基(111)上生長sp2鍵結氮化硼薄膜特性之研究," 碩士論文, 國立中央大學光電科學與工程學系 (2023).
[64] V. Gorshanov, "Modeling of magnetic field distribution and optimization of a magnetron for magnetron sputtering technology," Master’s thesis, Lappeenranta-Lahti University of Technology (2019).
[65] A. Rockett, ed., "Chemical Vapor Deposition," in The Materials Science of Semiconductors (Springer US, 2008), pp. 573–609.
[66] "Raman scattering," https://en.wikipedia.org/w/index.php?title=Raman_scattering&oldid=1184570284.
[67] 陳厚光,張立, "掃描式電子顯微鏡中之背向電子繞射," 科儀新知 第二十七卷, 22–30 (2006).
[68] "超高解析場發射掃描式電子顯微鏡暨電子背向散射繞射儀 JEOL JSM-7800F PrimeSEM," https://irc.ord.nycu.edu.tw/nstc_instrument/material/prime-sem/.
[69] "中央大學研發處," https://ncu.edu.tw/rd/tw/page/index.php?root=9&num=58.
[70] "X光光電子能譜儀 (XPS)PHI Scanning XPS Microprobe|ULVAC-PHI|材料表面分析|博精儀器 Analytical and Bio Science Instruments," https://www.aandb.com.tw/xps.html.
[71] P. Tsai, "The deposition and characterization of BCN films by cathodic arc plasma evaporation," Surf. Coat. Technol. 201, 5108–5113 (2007).
[72] K. Raidongia, A. Nag, K. P. S. S. Hembram, U. V. Waghmare, R. Datta, and C. N. R. Rao, "BCN: A Graphene Analogue with Remarkable Adsorptive Properties," Chem. – Eur. J. 16, 149–157 (2010).
[73] P. K. Rastogi, K. R. Sahoo, P. Thakur, R. Sharma, S. Bawari, R. Podila, and T. N. Narayanan, "Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction," Phys. Chem. Chem. Phys. 21, 3942–3953 (2019).
[74] M. Mirzaee, A. Rashidi, A. Zolriasatein, and M. Rezaei Abadchi, "Solid-state synthesis and characterization of two-dimensional hexagonal BCN nanosheet using a free template method," Diam. Relat. Mater. 115, 108350 (2021).
[75] S. Nakanishi and T. Horiguchi, "Surface Lattice Constants of Si(111), Ni(111) and Cu(111)," Jpn. J. Appl. Phys. 20, L214 (1981).
[76] T. K. Ng, J. A. Holguin-Lerma, C. H. Kang, I. Ashry, H. Zhang, G. Bucci, and B. S. Ooi, "Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications," J. Phys. Appl. Phys. 54, 143001 (2021).
[77] D. L. Miller, M. W. Keller, J. M. Shaw, K. P. Rice, R. R. Keller, and K. M. Diederichsen, "Giant secondary grain growth in Cu films on sapphire," AIP Adv. 3, 082105 (2013).
[78] L. Cao, X. Zhang, J. Yuan, L. Guo, T. Hong, W. Hang, and Y. Ma, "Study on the Influence of Sapphire Crystal Orientation on Its Chemical Mechanical Polishing," Appl. Sci. 10, 8065 (2020).
[79] B. Deng, Z. Pang, S. Chen, X. Li, C. Meng, J. Li, M. Liu, J. Wu, Y. Qi, W. Dang, H. Yang, Y. Zhang, J. Zhang, N. Kang, H. Xu, Q. Fu, X. Qiu, P. Gao, Y. Wei, Z. Liu, and H. Peng, "Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates," ACS Nano 11, 12337–12345 (2017).
[80] K. Verguts, B. Vermeulen, N. Vrancken, K. Schouteden, C. Van Haesendonck, C. Huyghebaert, M. Heyns, S. De Gendt, and S. Brems, "Epitaxial Al 2 O 3 (0001)/Cu(111) Template Development for CVD Graphene Growth," J. Phys. Chem. C 120, 297–304 (2016).
[81] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, "Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers," Nano Lett. 10, 3209–3215 (2010).
[82] K. H. Lee, H.-J. Shin, J. Lee, I. Lee, G.-H. Kim, J.-Y. Choi, and S.-W. Kim, "Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics," Nano Lett. 12, 714–718 (2012).
[83] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, "Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition," Nano Lett. 12, 161–166 (2012).
[84] R. Y. Tay, M. H. Griep, G. Mallick, S. H. Tsang, R. S. Singh, T. Tumlin, E. H. T. Teo, and S. P. Karna, "Growth of Large Single-Crystalline Two-Dimensional Boron Nitride Hexagons on Electropolished Copper," Nano Lett. 14, 839–846 (2014).
[85] L. Wang, B. Wu, L. Jiang, J. Chen, Y. Li, W. Guo, P. Hu, and Y. Liu, "Growth and Etching of Monolayer Hexagonal Boron Nitride," Adv. Mater. 27, 4858–4864 (2015).
[86] X. Song, J. Gao, Y. Nie, T. Gao, J. Sun, D. Ma, Q. Li, Y. Chen, C. Jin, A. Bachmatiuk, M. H. Rümmeli, F. Ding, Y. Zhang, and Z. Liu, "Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation," Nano Res. 8, 3164–3176 (2015).
[87] Y. Stehle, H. M. I. Meyer, R. R. Unocic, M. Kidder, G. Polizos, P. G. Datskos, R. Jackson, S. N. Smirnov, and I. V. Vlassiouk, "Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology," Chem. Mater. 27, 8041–8047 (2015).
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明