博碩士論文 110226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.139.90.131
姓名 巫建霆(Jian-Ting Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 在不同色溫及晝夜節律刺激值下對靜態工作專注力之評估
(Evaluation of Static Work Concentration under Different Correlated Color Temperature and Circadian Stimulus)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-1以後開放)
摘要(中) 本研究透過模擬室內辦公室環境光源,探討不同情境照明對受試者的生理、心理與專注力影響。透過基因演算法擬合不同晝夜節律刺激值(circadian stimulus, CS)與不同色溫(correlated color temperature, CCT)之照明情境,並且延續先前實驗團隊之照明人因評估技術,召募受試者進行心理物理學實驗,模擬辦公室環境,瞭解照明對使用者專注力與生心理影響。
本實驗設計六種光源情境光譜,共進行兩個照明實驗。實驗一固定色溫4000 K,調變三種不同CS值0.27、0.32、0.37;實驗二固定CS值0.36,改變三種不同色溫3000 K、4000 K、5000 K。實驗量測上,使用NeuroSky腦波儀進行測量與記錄受試者於照明情境下進行閱讀工作、閉眼休息的腦波訊號進行後續分析。實驗分析在時頻域上使用了經驗模態分解法(empirical mode decomposition, EMD)、希爾伯特轉換(Hilbert transform, HT)、機率密度函數(probability density function, PDF)以及接收者操作特徵曲線(receiver operating characteristic curve, ROC curve)進行運算;時域上使用喬治亞理工學院開發之Blink演算法去除腦波中眨眼訊號,再透過Higuchi method計算碎形維度(fractal dimension)。客觀指標上,使用作答總題數、正確率與接收者操作特徵曲線的曲線下面積(area under the curve, AUC);主觀指標則是以主觀問卷所得的評分作為標準。最終將實驗結果匯入SPSS統計軟體進行變異數分析,從分析中了解在照明情境間所使用的指標是否具顯著差異,以此探討照明對使用者的影響。
主觀指標而言,問卷結果顯示,在照明亮暗程度上情境四(色溫3000 K、CS值0.36)對比情境六(色溫5000 K、CS值0.36)具有顯著差異,受試者在不同色溫的情境下,高色溫的照明將帶來更亮的感受;客觀指標而言,受試者在不同照明情境下,其閱讀工作與閉眼休息的腦波狀態分類上並無顯著差異;閱讀工作時的腦波在不同情境間同樣沒有顯著差異;而情境六高色溫之照明情境下,受試者作答題數較多,表示在此實驗設計下,高色溫之照明光源較容易使受試者更為專注進行閱讀工作。

關鍵字:照明、專注力、晝夜節律刺激、腦電圖、希爾伯特轉換、接收者操作特徵曲線、碎形維度
摘要(英) By simulating indoor office lighting environments, this research explores the physiological, psychological, and concentration effects on users under different lighting conditions. Using a genetic algorithm, the study fits various circadian stimulus (CS) values and correlated color temperatures (CCTs) for lighting scenarios. The experiment inherits the procedures designed in the team previously. Participants are recruited for psychophysical experiments in simulated office environments to investigate the impact of lighting on users’ concentration and psychophysiology.
The experiment involves designing six lighting scenarios with different spectra and conducting two lighting experiments. Experiment one involves a fixed color temperature of 4000 K with varying CS values (0.27, 0.32, 0.37), while experiment two maintains a constant CS value of 0.36 and alters color temperatures (3000 K, 4000 K, 5000 K). Measurement-wise, NeuroSky EEG headsets are used to record brainwave signals during reading and closed-eye rest activities under different lighting scenarios. The collected data are then analyzed by employing empirical mode decomposition (EMD), Hilbert transform (HT), probability density function (PDF), and receiver operating characteristic curve (ROC curve) methods in the time-frequency domain. In the time domain, the Blink algorithm is utilized to remove eye-blink artifacts from the EEG signals and then fractal dimensions are computed by the Higuchi method. Objective indicators include total questions answered, accuracy, and area under the curve (AUC) of the ROC curve, while subjective indicators rely on scores from questionnaires. Finally, the experimental results are imported into the SPSS statistical software for analysis of variance (ANOVA) to understand if there are significant differences in the indicators between lighting scenarios and to explore the impact of lighting on users.
In terms of subjective indicators, questionnaire results show a significant difference in brightness perception between lighting scenario four (CCT 3000 K, CS 0.36) and six (CCT 5000 K, CS 0.36). Participants perceive higher color temperature lighting as brighter in different CCT scenarios. Regarding objective indicators, there are no significant differences between brainwaves of working and resting states under different lighting scenarios. Concentration levels during reading tasks do not differ significantly between scenarios. However, in scenario six with higher correlated color temperature, participants answer more questions, indicating that within this experimental design, lighting with higher correlated color temperature may enhance users’ concentration for reading tasks.

Keywords: Lighting, concentration, circadian stimulus, EEG, Hilbert transform, receiver operating characteristic curve, fractal dimension
關鍵字(中) ★ 照明
★ 專注力
★ 晝夜節律刺激
★ 腦電圖
★ 希爾伯特轉換
★ 接收者操作特徵曲線
★ 碎形維度
關鍵字(英) ★ lighting
★ concentration
★ circadian stimulus
★ EEG
★ Hilbert transform
★ receiver operating characteristic curve
★ fractal dimension
論文目次 摘要 vi
Abstract viii
致謝 x
目錄 xiii
圖目錄 xviii
表目錄 xxiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
1-3-1 研究假設 4
1-3-2 研究方法與步驟 4
1-3-3 研究受試者招募資格 6
第二章 文獻探討 7
2-1 照明對生理的影響 7
2-1-1 非視覺系統 10
2-1-2 晝夜節律刺激值 12
2-2 視覺疲勞判別 14
2-2-1 視覺疲勞的主觀評估 16
2-3 生理回饋與腦波 17
2-3-1 腦電圖 19
2-3-2 腦電位量測 22
2-4 基因演算法 26
第三章 研究方法與步驟 29
3-1 實驗設計 29
3-1-1 心理學實驗設計 30
3-1-2 視力檢查與專注力前測實驗 31
3-1-4 照明實驗一 38
3-1-5 照明實驗二 39
3-2 實驗設備 40
3-2-1 光譜可調式光源箱 40
3-2-2 光源照明分析控制軟體 41
3-2-3 光源控制軟體THOUSLITE FS光譜儀 42
3-2-4 視力檢查儀 44
3-2-5 腦波儀 44
3-3 照明實驗一、二 46
3-3-1 實驗環境配置 46
3-3-2 實驗流程 50
3-3-3 實驗內容 51
3-4 實驗資料分析方法 54
3-4-1 希爾伯特-黃轉換 55
3-4-2 經驗模態分解法 55
3-4-3 希爾伯特轉換 60
3-4-4 頻帶功率與機率密度函數 62
3-4-5 接收者操作特徵曲線 64
3-4-6 檢測眨眼訊號 67
3-4-7 碎形維度 68
3-4-8 重複量數變異數分析法 69
第四章 實驗結果與討論 72
4-1 腦波分析結果 73
4-1-1 照明實驗一 74
4-1-2 照明實驗二 82
4-2 客觀結果討論 89
4-3 主觀結果討論 92
4-4 主客觀結果比較 96
第五章 結論與未來展望 98
5-1 結論 98
5-2 未來展望 99
參考文獻 101
附錄一 中文智力測驗內容範例 106
附錄二 主觀評估情境體驗問卷 111
附錄三 國立臺灣大學研究倫理審查核可證明書 113
附錄四 專注度指標AUC值統計表 114
附錄五 受試者P14各情境之PDF以及ROC曲線 130
附錄六 受試者P28各情境之PDF以及ROC曲線 136
參考文獻 [1] S. Nakamura, M. Senoh, and T. Mukai. P-GaN/N-InGaN/N-GaN doubleheterostructure blue-light-emitting diodes. Japanese Journal of Applied Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
[2] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives of Ophthalmology, 110(1):99–104, 1992.
[3] K. E. West et al. Blue light from light-emitting diodes elicits a dose dependent suppression of melatonin in humans. Journal of Applied Physiology, 110(3):619–626, 2011.
[4] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical meaning for lighting for work. Applied Ergonomics, 37(4):461–466, 2006.
[5] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of visual and biological effects. Lighting Research and Technology, 36(4):255– 266, 2004.
[6] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, 2012.
[7] WIKIPEDIA. Kruithof curve. Source:
https://en.wikipedia.org/wiki/Kruithof_curve, accessed on 2024/01/17.
[8] Koninklijke Philips Electronics N.V., Feel good, learn better with SchoolVision, 2011.
[9] M. S. Mott et al. Illuminating the effects of dynamic lighting on student learning. SAGE Open, 2, 2012.
[10] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting Research and Technology, 50, 2016.
[11] R. Küller., L. Wetterberg. Melatonin, cortisol, EEG, ECG and subjective comfort in healthy humans: impact of two fluorescent lamp types at two light intensities. Lighting Research and Technology, 1993.
[12] J. Y. Shin et al. Analysis of the effect on attention and relaxation level by correlated color temperature and illuminance of LED lighting using EEG signal. Journal of the Korean Institute of IIIuminating and Electrical Instal- lation Engineers, 27(5):9–17, 2013.
[13] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
[14] D. C. Fernandez et al. Light affects mood and learning through distinct retina-brain pathways. Cell, 175(1):71–84.e18, 2018.
[15] P. Khademagha et al. Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment, 108(1):263–272, 2016.
[16] LumosTech. The science behind adjusting your circadian rhythm with light.Source: https://reurl.cc/g7qE3b.
[17] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
[18] I. Provencio, G. Jiang, W. De Grip, W. Hayes, and M. Rollag. Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America, 95(1): 340-345, 1998.
[19] M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman. A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2): 213-228, 2005.
[20] M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner. Modelling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4): 386-396, 2012.
[21] M.S. Rea and M.G. Figueiro, Light as a circadian stimulus for architectural lighting, Lighting Research and Technology, 50(4): 497-510, 2018.
[22] M. Wang, M. R. Luo, S. Zheng, J. Qiang, and H. Wang. Influence of circadian stimulus and colour temperature on children’s study performance and fatigue. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 6-10, Taipei, Taiwan, 2018.
[23] C. W. Lin, F. M. Hsu, C. J. Chou, H. S. Chen, and M. R. Luo. Office lighting design in consideration of eye fatigue and task performance. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 19-28, Taipei, Taiwan, 2018.
[24] M. S. Islam, R. Dangol, M. Hyva′rinen, P. Bhusal, M. Puolakka, and L. Halonen. User acceptance studies for LED office lighting: Lamp spectrum, spatial brightness and illuminance. Lighting Research & Technology, 47:54-79, 2015.
[25] CS calculator. Source: https://www.lrc.rpi.edu/cscalculator/
[26] 網路資料,取自:https://www.lrc.rpi.edu/healthyliving/#section-whatIsCircadianLighting
[27] J.-H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge.
[28] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition. Taylor and Francis, 1995.
[29] H. Yoshitake. Relations between the symptoms and the feeling of fatigue. Ergonomics, 14(1):175–186, 1971.
[30] R. Likert. A technique for the measurement of attitudes. Archives of psychology. Columbia University, 1932.
[31] M. A. Robinson. Using multi-item psychometric scales for research and practice in human resource management. Human Resource Management, 57(3):739–750, 2018.
[32] S. Mack et al. Principles of Neural Science, Fifth Edition. McGraw-Hill Education, 2013.
[33] H. H. Suzana. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3:31, 2009.
[34] A. M. Feyissa, W. O. Tatum. Adult EEG. Handbook clin neurol, 160:103-124, 2019
[35] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
[36] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[37] G. Buzs´aki. Rhythms of the Brain. Oxford ; New York : Oxford University Press, 2006.
[38] B. McDermott et al. Gamma band neural stimulation in humans and the promise of a new modality to prevent and treat Alzheimer’s disease. Journal of Alzheimer’s Disease, 65(2):363–392, 2018.
[39] A. B. Usakli. Improvement of EEG signal acquisition: An electrical aspect for state of the art of front end. Computational Intelligence and Neuroscience, 2010, 2009.
[40] G. H. Klem et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52:3–6, 1999.
[41] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
[42] A. Llenas and J. Carreras, “Arbitrary spectral matching using multi-LED lighting systems,” Optical Engineering, 58(3), 035105, 2019.
[43] W. Hu and W. Davis, “Spectral optimization for human-centric lighting using a genetic algorithm and a modified Monte Carlo method,” OSA Advanced Photonics Congress (AP) 2020, paper PvM2G.4, Washington, United States, July 13–16, 2020.
[44] 基因演算法Source:https://dotblogs.com.tw/dragon229/2013/01/03/86692
[45] 蘇木春、張孝德,《機器學習:類神經網路、模糊系統以及基因演算法則》,新北市:全華圖書,2019年,第十章。
[46] National Electrical Manufacturers Association, American National Standard for Electric Lamps Specifications for the Chromaticity of Solid-state Lighting Products, ANSI-C78.377, 2015.
[47] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach. SAGE Publications, 2016.
[48] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures? Source: https://reurl.cc/r88xnr.
[49] 胡毓堅,「照明光源的色溫及晝夜節律刺激值對室內靜態工作專注力之影響研究」,國立中央大學,碩士論文,民國 110 年。
[50] Y. Ohno and M. Fein, “Vision experiment on acceptable and preferred white light chromaticity for lighting,” CIE x039:2014, Proceedings of CIE 2014 Lighting Quality and Energy Efficiency, Kuala Lumpur, Malaysia, 2014.
[51] LEDCube. Source: http://www.thouslite.com/PRODUCTS/16.html.
[52] 鄭羽禎,「基於神經網路之多頻道燈箱光譜生成器」,國立中央大學,碩士論文,民國 112 年。
[53] NeuroSky. MindWave Mobile: User Guide, 2015.
[54] MindWave mobile. Source: https://www.me100fun.com.hk/products/neurosky-mindwave-mobile-2.
[55] 網路資料,取自:https://www.kfsh.hc.edu.tw/uploads/article/3511/20190514165816.pdf
[56] N. E. Huang et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454:903–995, 1998.
[57] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series. Source: https://reurl.cc/ZO6zo3.
[58] 陳佑榮,「應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理」,國立中央大學,碩士論文,民國104年。
[59] 洪暉程,「總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用」,國立中央大學,碩士論文,民國97年。
[60] 柯景瀚,「不同聲音或照明情境下室內靜態工作之專注程指標開發」,國立中央大學,碩士論文,民國 110 年。
[61] R. Wang, Y. Wang and C. Luo. EEG-based real-time drowsiness detection Using Hilbert-Huang transform. 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 195-198, Hangzhou, China, 2015.
[62] 符祐嘉,「基於腦波分析之不同環境音下專注力識別」,國立中央大學,碩士論文,民國 111 年。
[63] M. Agarwal, R. Sivakumar. “Blink: A fully automated unsupervised algorithm for eye-blink detection in EEG signals,” 2019 IEEE 57th Annual Allerton Conference on Communication, Control, and Computing.
[64] B. B. Mandelbrot. The Fractal Geometry of Nature. Times Books; 2nd prt. Edition (1982).
[65] T. Higuchi. “Approach to an irregular time series on the basis of the fractal theory,” Physica D: Nonlinear Phenomena, 31(2), 277-283 (1988).
[66] E. R. Girden. ANOVA: Repeated measures. Sage Publications, 1992.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2024-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明