博碩士論文 109232012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.218.218.230
姓名 林里旺(LIN,LI-WANG)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以雷射直寫技術於銀離子交換玻璃 製作表面增強拉曼基板
(Fabrication of surface enhanced Raman substrate based on laser direct writing on Na+-Ag+ ion exchanged glass)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用以雷射直寫技術於銀離子交換玻璃製作表面增強拉曼基板,在以雷射寫出銀結構後以BOE (Buffered Oxide Etchant)進行蝕刻,並且對其進行石墨烯的轉移,量測其拉曼散射訊號,最後成功的量測到石墨烯的表面增強拉曼散射訊號,若能將基板進行表面平坦化後可作為一具有表面增強拉曼活性基板。
摘要(英) This study describes the fabrication of a surface enhanced Raman substrate utilizing laser direct writing technology. After field-assisted ion exchanged process, a cw green laser light is used to reduce the in-diffused silver ions. Etching is subsequently performed using BDE (Buffered Oxide Etchant) to expose the nanostructures. Graphene is then transferred on top of the substrate, acting as a probe for the Raman-active substrate. Raman signatures such as the G-band and D-band are successfully measured which correlates closely with the measured surface profiles.
關鍵字(中) ★ 拉曼 關鍵字(英)
論文目次 中文摘要 iii
Abstract vi
誌謝 vii
目錄 viii
圖目錄 ix
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2研究動機 4
1-3論文架構 6
第二章 研究方法 7
2-1銀離子熱還原之機制 7
2-2奧斯瓦爾德熟化 8
2-3銀離子光還原之機制 10
2-4拉曼光譜學簡介 11
2-5表面增強拉曼散射簡介 13
第三章 實驗設計與架構 14
3-1樣品製作與實驗架構 14
3-1-1銀離子交換玻璃之製備 14
3-1-2利用雷射進行銀還原之方法 17
3-1-3石墨烯轉移至樣品上之方法 18
3-1-4拉曼散射量測架構 19
3-2原子力顯微鏡AFM((atomic force microscopy)簡介 20
3-2 SEM(scanning electron microscopy)簡介 21
第四章 實驗結果與討論 22
第五章 結論與展望 29
參考文獻 30
參考文獻 [1] Kneipp, K. (2007). Surface-enhanced Raman scattering. Physics Today, 60(11), 40-46. https://doi.org/10.1063/1.2812122
[2] Nyman, R. A. (2017). Absorption and Fluorescence spectra of Rhodamine 6G [Data set]. Zenodo. https://doi.org/10.5281/zenodo.569817
[3] Ou, J., Hu, Y., Huang. (2018). L. et al. pH-sensitive nanocarriers for Ganoderma applanatum polysaccharide release via host–guest interactions. J Mater Sci 53, 7963–7975. https://doi.org/10.1007/s10853-018-2091-0.
[4] Rhodamine 6G Dye SERS Spectral SERSitive: Accurate SERS Substrates. (n.d.). Sersitive. https://sersitive.eu/application_types/dyes/rhodamine-6g/
[5] 表面增強拉曼芯片(Phan 2 SERS Substrate). (n.d.). 汎鍶科藝. https://phansco.com/tw/technology/3
[6] Evaluating a Novel Approach to SERS. (n.d.). NikaLyte. https://www.nikalyte.com/wp-content/uploads/WP-AN-SERS-Substrates-RevA-web.pdf
[7] Mikella E. Hankus, Dimitra N. Stratis-Cullum, Paul M. Pellegrino.(2011) "Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application," Proc. SPIE 8099, Biosensing and Nanomedicine IV, 80990N; https://doi.org/10.1117/12.893842
[8]Chen, Y., Jaakola, J., Säynätjoki,A., Tervonen, A., Honkanen, S. (2010). Glass‐embedded silver nanoparticle patterns by masked ion‐exchange process for surface‐enhanced Raman scattering. Journal of Raman Spectroscopy. https://doi.org/10.1002/jrs.2784
[9] Perry, D.L. (2011). Handbook of Inorganic Compounds (2nd ed.). CRC Press. https://doi.org/10.1201/b10908
[10] Simo, A., Polte, J., Pfänder, N., Vainio, U., Emmerling, F., & Rademann, K. (2012). Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 134(45), 18824–18833. https://doi.org/10.1021/ja309034n.
[11] Alemán, J., Chadwick, A., He, J., Hess, M., Horie, K., Jones, R., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S. & Stepto, R. (2007). Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 79(10), 1801-1829. https://doi.org/10.1351/pac200779101801
[12] Ratke, L ., Voorhees, P, W. (2002). Growth and Coarsening:Ostwald Ripening in Material Processing (1st ed.). Springer-Verlag Berlin Heidelberg New York. https://doi.org/10.1007/978-3-662-04884-9.
[13]Yuki, K., Hideyuki, I., Seiji, F., Toshio, S., Tsuneo, M., Toshinobu, Y., Kazuyuki, H., (2000). Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process. J. Appl. Phys. 88 (3): 1244–1250. https://doi.org/10.1063/1.373810
[14] Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1974) Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 26, 163-166.
https://doi.org/10.1016/0009-2614(74)85388-1
[15] Smekal, A. Zur Quantentheorie der Dispersion. Naturwissenschaften 11, 873–875 (1923). https://doi.org/10.1007/BF01576902
[16] Raman, C. V. (1928). "A new radiation". Indian Journal of Physics. 2: 387–398. hdl:10821/377.
[17]Jeanmaire, D.L., & Duyne, R.P. (1977). Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry, 84, 1-20.
[18]Albrecht, M. G., & Creighton, J. A. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 99(15), 5215-5217.
[19]陳景翔, 黃志清, 陳冠榮, & 黃炳照. (2012). 拉曼散射之表面訊號增益技術應用. 科儀新知, 33(5).
[20] Raman vs SERS… What’s the Difference? (n.d.). Metrohm. https://www.metrohm.com/zh_tw/discover/blog/20-21/raman-vs-sers--what-s-the-difference-.html
[21]Wackerow, S., Seifert, G., Abdolvand, A. (2011). Homogenous silver-doped nanocomposite glass. Optical Materials Express, 1(7), 1224-1231.
[22] Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C., (2006). Diffusion behavior of transition metals in field-assisted ion-exchanged glasses. Solid State Ionics. 177. 3151-3155. 10.1016/j.ssi.2006.07.047.
[23] Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C., (2006). Diffusion behavior of transition metals in field-assisted ion-exchanged glasses. Solid State Ionics. 177. 3151-3155. 10.1016/j.ssi.2006.07.047.
[24] Kapila, D. (1995). Diffusion processes for integrated waveguide fabrication in glasses: A solid-state electrochemical approach (Order No. 9622911). https://doi.org/10.1016/0009-2509(95)00115-L
[26] Ziemath, E., Araújo, V., Escanhoela Jr, C., (2008). Compositional and Structural Changes at the Anodic Surface of Thermally Poled Soda-Lime float Glass. Journal of Applied Physics. 104. 054912 - 054912. https://doi.org/10.1063/1.2975996.
[27] Zhang, A.Y., Suetsugu, T., & Kadono, K. (2007). Incorporation of silver into borosilicate glasses by a classical staining process. Journal of the Ceramic Society of Japan, 115, 47-51.
[28] User Instruction. (n.d.). ACS Material. https://www.acsmaterial.com/pub/media/wysiwyg/upload/124/User%20Instruction%20ACS%20Material%20TTG.pdf
[29]黃英碩. (2005)"掃描探針顯微術的原理及應用," 科儀新知
[30]Mohammed, A., Abdullah, A. (2018). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
[31]Wall, M., Madison,W (2022). The Raman Spectroscopy of Graphene and the Determination of Layer Thickness. Thermofisher. https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/raman-spectroscopy-graphene-determination-layer-thickness-an52252.pdf
[32]Scardaci, V., Giuseppe, C., (2021). "Raman Spectroscopy Investigation of Graphene Oxide Reduction by Laser Scribing" C 7, no. 2: 48. https://doi.org/10.3390/c7020048
指導教授 戴朝義(Tai, Chao-Yi) 審核日期 2024-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明