博碩士論文 110523055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.22.61.246
姓名 柯羽軒(Yu-Xuan Ke)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於能源效益之聯邦式學習應用於無人機通訊之優化
(Optimization of Energy-Efficient Federated Learning over UAV Wireless Communication System)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現代的無人機系統中,結合機器學習技術的應用變得越來越重要,以實現自主性、智能性和高效性,其應用在生活中發揮著關鍵作用,包括監控、搜索和救援、農業、環境監測等。然而,機器學習模型的訓練需要大量的數據,而無人機可能會分散在不同的地點,這些地點可能無法輕易地將數據傳輸到中央訓練伺服器。於是無人機系統通常面臨數據隱私和頻寬限制的挑戰。聯邦式學習(Federated Learning,FL)是一項創新技術,可以有效地應對這些挑戰,利用分散式學習的特性,將無人機系統的性能提升到新的水平。
本研究考慮在單一無人機與多個地面基站的場景中,設計一個時槽模型來約束無人機與地面基站的行為,且地面基站作為FL的用戶端進行本地模型的訓練,而無人機做為資料聚合的中心。在一定的準確度下,以最小化整體系統的能耗為優化目標函數,進行聯合優化無人機飛行軌跡、地面基站發射功率、無人機懸停時間與資料大小分配,而此聯合設計是一個高難度的非凸問題。為克服這些設計的難題,本論文利用連續凸逼近的方法,將此問題轉化為一凸問題,再利用凸優化求解。此外,本論文提出無人機飛行軌跡漸進解,簡化了最佳化問題,證明了在長時間的任務時間下的能耗逼近本論文所提出的最佳解。運用聯邦式學習結合單一無人機系統進行聯合設計凸優化,除了能夠解決資料隱私性的問題外,也能夠減少在訓練模型時所產生的能耗,進一步減少整體性統的能耗。
摘要(英) In modern unmanned aerial vehicle (UAV) systems, the integration of machine learning technology has become increasingly crucial for achieving autonomy, intelligence, and efficiency. Its applications play a critical role in various aspects of life, including surveillance, search and rescue, agriculture, environmental monitoring, and more. However, the training of machine learning models requires a substantial amount of data, and UAVs may be dispersed across different locations, making it challenging to easily transmit data to central training servers. As a result, UAV systems often face challenges related to data privacy and bandwidth limitations. Federated Learning (FL) is an innovative technology that effectively addresses these challenges by leveraging the characteristics of distributed learning. It elevates the performance of UAV systems to new levels, overcoming issues related to data privacy and bandwidth constraints.
This research considers designing a time-slotted model to constrain the behavior of UAV and multiple base stations in a scenario involving a single UAV and multiple base stations. The base stations act as FL clients for training local models, while the UAV serves as the data aggregation center. The objective function is to minimize the overall system energy consumption, subject to a certain level of model accuracy. The optimization involves joint design of UAV flight trajectories, UAV-to-ground station channel gains, ground station transmission power control, and data size allocation. This joint design poses a highly challenging non-convex problem. To overcome the difficulties in this design, this paper employs a method of successive convex approximation (SCA), transforming the problem into a convex one and subsequently utilizing convex optimization for solution. Additionally, the paper proposes an asymptotic solution for UAV flight trajectories, simplifying the optimization problem. It proves that the energy consumption over extended mission times approximates the optimal solution proposed in this paper. The application of FL combined with a single UAV system for joint design convex optimization not only addresses data privacy concerns but also reduces energy consumption during model training, thereby further minimizing the overall system energy consumption.
關鍵字(中) ★ 無人機通訊
★ 聯邦式學習
★ 軌跡設計
★ 功率控制
★ 連續凸逼近
★ 凸優化
★ 聯合優化設計
關鍵字(英)
論文目次 摘要..........i
Abstract..........ii
致謝..........iv
目錄..........v
圖目錄..........vii
表目錄..........viii
符號說明..........ix
第一章 緒論..........1
1-1 研究背景與動機..........1
1-2 研究目的與問題..........3
1-3 文獻探討..........4
1-3-1 聯邦學習於無線通訊系統之應用 ..........4
1-3-2 聯邦學習於無人機通訊系統之應用..........5
1-4 論文貢獻..........6
第二章 背景理論介紹..........7
2-1 聯邦學習(Federated Learning)..........7
2-1-1 聯合平均(FedAvg)..........8
2-2 連續凸逼近(Successive Convex Approximation)..........9
2-2-1 一階泰勒展開式(First-order Taylor series expansion) ..........10
第三章 基於聯邦式學習的單無人機通訊系統..........11
3-1 系統模型..........11
3-2 最佳化問題..........16
3-2-1 時槽優化..........17
3-2-2 傳輸速率優化..........18
3-3 無人機路徑漸進解..........20
第四章 模擬結果..........22
4-1 聯合優化收斂圖..........23
4-2 無人機優化路徑圖..........24
4-3 聯合設計問題之重心座標比較..........28
4-4 漸進解設計路徑圖..........29
4-5 任務時間能耗比較..........30
4-6 無人機與地面基站能耗比較..........31
第五章 結論..........32
參考文獻..........33
附錄A..........37
參考文獻 [1] S. Chandrasekharan et al., “Designing and Implementing Future Aerial Communication Networks,” IEEE Commun. Mag., vol. 54, no. 5, pp. 26–34, May 2016.
[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.
[3] B. Van Der Bergh, A. Chiumento, and S. Pollin, “LTE in The Sky: Trading Off Propagation Benefits with Interference Costs for Aerial Nodes,” IEEE Commun. Mag., vol. 54, no. 5, pp. 44–50, May 2016.
[4] I. Bor-Yaliniz and H. Yanikomeroglu, “The New Frontier in RAN Heterogeneity: Multi-tier Drone-cells,” IEEE Commun. Mag., vol. 54, no. 11, pp. 48–55, Nov. 2016.
[5] Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, Challenges, and Promising Technologies,” IEEE Wireless Commun., vol. 26, no. 1, pp. 120–127, Feb. 2019.
[6] S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier Drone Architecture for 5G/B5G Cellular Networks: Challenges, Trends, and Prospects,” IEEE Commun. Mag., vol. 56, no. 3, pp. 96–103, Mar. 2018.
[7] D. C. Nguyen et al., “Federated Learning for Smart Healthcare: A Survey,” ACM Comput. Surv., vol. 55, no. 3, pp. 1–37, Apr. 2023.
[8] Z. Zhao, C. Feng, H. H. Yang, and X. Luo, “Federated-learning-enabled Intelligent Fog radio Access Networks: Fundamental Theory, Key Techniques, and Future Trends,” IEEE Wireless Commun., vol. 27, no. 2, pp. 22–28, Apr. 2020.
[9] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of Things Intrusion Detection: Centralized, On-device, or Federated Learning?,” IEEE Netw., vol. 34, no. 6, pp. 310–317, Nov./Dec. 2020.
[10] Y. Liu et al., “Deep Anomaly Detection for Time-series Data in Industrial IoT: A Communication-efficient on-device Federated Learning Approach,” IEEE Internet Things J., vol. 8, no. 8, pp. 6348–6358, Apr. 2021.
[11] S. Wang et al., “Adaptive Federated Learning in Resource Constrained Edge Computing Systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221, Jun. 2019.
[12] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated Learning-based Computation Offloading Optimization in Edge Computing-supported Internet of Things,” IEEE Access, vol. 7, pp. 69 194–69 201, 2019.
[13] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory,” IEEE Internet of Things, vol. 6, no. 6, pp. 10 700–10 714, Dec. 2019.
[14] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling Policies for Federated Learning in Wireless Networks,” IEEE Trans. Commun., vol. 68, no. 1, pp. 317–333, Jan. 2020.
[15] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed Federated Learning for Ultra-reliable Low-latency Vehicular Communications,” IEEE Trans. Commun., vol. 68, no. 2, pp. 1146–1159, Feb. 2020.
[16] G. Zhu, Y. Wang, and K. Huang, ‘‘Broadband Analog Aggregation for Low-latency Federated Edge Learning,’’ IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Jan. 2
[17] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H. Middleton, ‘‘Cell-free Massive MIMO for Wireless Federated Learning,’’ IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377–6392, Oct. 2020.
[18] Y. Sun, S. Zhou, and D. Gündüz, ‘‘Energy-aware Analog Aggregation for Federated Learning with Redundant Data,’’ Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–7.
[19] K. Yang, T. Jiang, Y. Shi and Z. Ding, "Federated Learning via Over-the-Air Computation," IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022-2035, Mar. 2020.
[20] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio resource allocation for federated edge learning,” 2020 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2020, pp. 1–6
[21] B. Khamidehi and E. S. Sousa, “Federated Learning for Cellular-connected UAVs: Radio Mapping and Path Planning,” Proc. GLOBECOM IEEE Global Commun. Conf., 2020, pp. 1–6.
[22] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy-efficient Federated Learning Over Wireless Communication Networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Mar. 2021.
[23] Q.-V. Pham, M. Le, T. Huynh-The, Z. Han, and W.-J. Hwang, “Energy-efficient Federated Learning Over UAV-enabled Wireless Powered Communications,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 4977–4990, May 2022.
[24] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2329–2345, Apr. 2019.
[25] X. Hou, J. Wang, C. Jiang, X. Zhang, Y. Ren, and M. Debbah, “UAV-enabled covert federated learning,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6793–6809, Oct. 2023.
[26] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong, “Federated learning over wireless networks: Optimization model design and analysis,” IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1387–1395, 2019.
[27] I. Mrad, L. Samara, A. A. Abdellatif, A. Al-Abbasi, R. Hamila, and A. Erbad, ‘‘Federated learning for UAV swarms under class imbalance and power consumption constraints,’’ Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 01–06.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明