博碩士論文 110523059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.222.200.143
姓名 郭俍汝(Liang-Ru Guo)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 階層式聯邦式學習於無線電地圖重建之設計與模擬
(Design and Simulation of Hierarchical Federated Learning for Radio Map Reconstruction)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 無線電地圖可提供資訊並應用於各領域,因此建立精準度高的地圖是首要目標。然而在實際環境中存在著各種干擾,使得準確預測成為一項具有挑戰性的任務。機器學習是一個的強大工具,可應用於地圖重建。不過隨著物聯網的普及,大眾逐漸開始意識資訊安全的問題,為了解決機器學習涉及的隱私問題,人們提出了聯邦學習演算法。除了隱私問題,在物聯網發展同時,大量數據生成以及運算耗能增加,則是引起環保議題上的關注。因此本論文以階層式聯邦學習算法,搭配二次形式或多層感知器重建無線電地圖。模擬結果顯示,我們提出的算法在保有用戶隱私的同時,成功降低其複雜度,且地圖的預測準確度達到相同的效能水準。
摘要(英) A radio map provides valuable information and has applications in various fields. Creating highly accurate maps is a primary objective, but practical environments introduce various interferences, posing a challenging task for accurate prediction. Machine learning is a powerful tool for reconstructing map models. However, the rapid development of the Internet of Things has brought attention to information privacy issues. To address these concerns, federated learning (FL) algorithms have been proposed. In addition to privacy concerns, the generation of significant amounts of data and the increasing energy consumption during development have raised environmental concerns. Therefore, this paper employs hierarchical federated learning (HFL) algorithms with a quadratic form or multilayer perceptron to reconstruct the radio map. The simulation results demonstrate that our proposed algorithm effectively reduces client-side complexity while maintaining privacy. Additionally, the accuracy of the map also achieves the same level of performance.
關鍵字(中) ★ 無線電地圖
★ 聯邦式學習
★ 邊緣複雜度
★ 多層感知器
★ 二次形式
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻探討 2
1-3 論文貢獻 3
第二章 背景理論介紹 4
2-1 聯邦學習 4
2-2 多層感知器 5
第三章 系統架構 7
3-1 通道模型 7
3-2 移動模型 8
3-3 重建無線電地圖之問題與優化 8
3.3.1 非線性特質 8
3.3.2 隱私問題 9
3.3.3 邊緣設備複雜度 10
第四章 重建無線電地圖之設計 11
4-1 階層式結構(Hierarchical Structure) 11
4-2 第一階段:基地台運算 12
4.2.1 二次形式 12
4.2.2 多層感知器 13
4-3 第二階段:伺服器運算 14
第五章 模擬結果 15
5-1 SINR預測模擬結果圖 17
5-2 模型參數數量分析 18
5-3 演算法誤差分析 20
5-4 訓練資料數量分析 21
第六章 結論 22
參考文獻 23
參考文獻 [1]
S. Bi, J. Lyu, Z. Ding and R. Zhang, "Engineering Radio Maps for Wireless Resource Management," IEEE Wireless Commun., vol. 26, no. 2, pp. 133-141, April 2019.
[2]
K. Suto, S. Bannai, K. Sato, K. Inage, K. Adachi and T. Fujii, "Image-Driven Spatial Interpolation with Deep Learning for Radio Map Construction," IEEE Wireless Commun. Lett., vol. 10, no. 6, pp. 1222-1226, June 2021.
[3]
H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data", Proc. 20th Int. Conf. Artif. Intell. Statist.(AISTATS), 2017.
[4]
Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin, "A review of applications in federated learning, " Comput. Ind. Eng., vol. 149, Nov. 2020.
[5]
Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat, George K. Karagiannidis, Kamal Taha, "Efficient Machine Learning for Big Data: A Review," Big Data Research, Vol. 2, No. 3, 2015, pp. 87-93.
[6]
Eva García-Martín, Crefeda Faviola Rodrigues, Graham Riley, Håkan Grahn, "Estimation of energy consumption in machine learning," J. Parallel Distrib. Comput., Vol. 134, 2019, pp. 75-88.
[7]
M. Kumar, X. Zhang, L. Liu, Y. Wang and W. Shi, "Energy-Efficient Machine Learning on the Edges," IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2020, pp. 912-921.
[8]
S. H. Jung, B. -C. Moon and D. Han, "Performance Evaluation of Radio Map Construction Methods for Wi-Fi Positioning Systems," IEEE Trans. Intell. Transp. Syst., vol. 18, no. 4, pp. 880-889, April 2017.
[9]
D. Romero and S. -J. Kim, "Radio Map Estimation: A data-driven approach to spectrum cartography," IEEE Signal Process. Mag., vol. 39, no. 6, pp. 53-72, Nov. 2022.
[10]
V. -P. Chowdappa, C. Botella, J. J. Samper-Zapater and R. J. Martinez, "Distributed Radio Map Reconstruction for 5G Automotive," IEEE Intell. Transp. Syst. Mag., vol. 10, no. 2, pp. 36-49, 2018.
[11]
S. Mohammadjafari, S. Roginsky, E. Kavurmacioglu, M. Cevik, J. Ethier and A. B. Bener, "Machine Learning-Based Radio Coverage Prediction in Urban Environments," IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2117-2130, Dec. 2020.
[12]
Jing-Ling Wang et al. “Machine learning based rapid 3D channel modeling for UAV communication networks”, Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), 2019, pp. 1–5.
[13]
J. Chen, U. Yatnalli and D. Gesbert, "Learning radio maps for UAV-aided wireless networks: A segmented regression approach," Proc. IEEE Int. Conf. Commun. (ICC), 2017, pp. 1-6.
[14]
Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, Yuan Gao, "A survey on federated learning," Knowledge-Based Systems, Vol. 216,2021.
[15]
C. T. Dinh et al., "Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation," IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 398-409, Feb. 2021.
[16]
H. H. Yang, Z. Liu, T. Q. S. Quek and H. V. Poor, "Scheduling Policies for Federated Learning in Wireless Networks," IEEE Trans. Commun., vol. 68, no. 1, pp. 317-333, Jan. 2020.
[17]
M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke and L. Shu, "Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis," IEEE Access, vol. 9, pp. 138509-138542, 2021.
[18]
B. Khamidehi and E. S. Sousa, "Federated Learning for Cellular-Connected UAVs: Radio Mapping and Path Planning," Proc. IEEE Global Commun. Conf. (GLOBECOM)., 2020, pp. 1-6.
[19]
L. Liu, J. Zhang, S. H. Song and K. B. Letaief, "Client-Edge-Cloud Hierarchical Federated Learning," Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1-6.
[20]
B. Xu, W. Xia, W. Wen, P. Liu, H. Zhao and H. Zhu, "Adaptive Hierarchical Federated Learning Over Wireless Networks," IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2070-2083, Feb. 2022.
[21]
W. Y. B. Lim et al., "Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning," IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 536-550, 1 March 2022.
[22]
L. Liu, J. Zhang, S. Song and K. B. Letaief, "Hierarchical Federated Learning With Quantization: Convergence Analysis and System Design," IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 2-18, Jan. 2023.
[23]
H. Zhu and Y. Jin, "Multi-Objective Evolutionary Federated Learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1310-1322, April 2020.
[24]
A. Al-Hourani, S. Kandeepan and S. Lardner, "Optimal LAP Altitude for Maximum Coverage," IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569-572, Dec. 2014.
[25]
M. N. Anjum and H. Wang, "Mobility Modeling and Stochastic Property Analysis of Airborne Network," IEEE Trans. Netw. Sci. Eng, vol. 7, no. 3, pp. 1282-1294, 1 July-Sept. 2020.
[26]
E. J. Teoh, K. C. Tan and C. Xiang, "Estimating the Number of Hidden Neurons in a Feedforward Network Using the Singular Value Decomposition," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1623-1629, Nov. 2006.
指導教授 古孟霖 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明