參考文獻 |
[1] 〈應對氣候變化與生物多樣性保護的國際規則協同:演進、挑戰與中國選擇〉,取自http://journal.bit.edu.cn/fileBJLGDXXBSKB/journal/article/bjlgdxxbshkxb/2022/2/PDF/S20220194.pdf。
[2] 〈基礎四國參與全球氣候治理:歷史貢獻、新挑戰與對策〉,取自http://eer.hbue.edu.cn/_upload/article/files/f5/e1/b448880f4ba191c31064ad2d99aa/9eb0c076-61f7-45e4-b5ff-19cfcabe497e.pdf。
[3] 〈COP26格拉斯哥氣候公約出爐!減碳、抗暖「5大成就」一次看〉,取自https://www.ettoday.net/news/20211116/2125117.htm。
[4] 〈一次看懂2050淨零排放路徑及策略,影響台灣未來30年關鍵行動〉,取自https://www.digiknow.com.tw/knowledge/6258ee0d906b1。
[5] 〈《國際趨勢篇》 綠能趨勢轉向 氫經濟成顯學 全球瞄準兆元商機〉,取自https://www.trademag.org.tw/page/itemsd/?id=7873730&no=21。
[6] 〈加拿大風電製氫潛力高,與德國簽署跨大西洋氫供應協議〉,取自https://ynews.page.link/Kjjf2。
[7] 〈德國氫能政策發展現況〉,取自https://www.trade.gov.tw/Pages/Detail.aspx?nodeID=45&pid=757677。
[8] 〈溫室氣體排放統計〉,取自https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b。
[9] 〈臺灣2050淨零排放路徑及策略總說明〉,取自https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTA0MC8yZTZhZTA0Mi0wYjUyLTQ4OTAtOGY5NC1hYjk5MzgzNWZlZTIucGRm&n=6Ie654GjMjA1MOa3qOmbtuaOkuaUvui3r%2bW%2bkeWPiuetlueVpee4veiqquaYji5wZGY%3d&icon=.pdf。
[10] 〈臺灣2050淨零排放〉,取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1。
[11] F. Liu, C. Duan, “Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells”, Sustainability, Vol. 13, Issue 9, pp. 4736, 2021.
[12] I. T. Bello, S. Zhai, S. Zhai, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, Vol. 46, Issue 75, pp. 37406-37428, 2021.
[13] A. J. A. Aziz, N. A. Baharuddin, M. R. Somalu, A. Muchtar, “Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications”, Ceramics International, Vol. 46, Issue 15, pp. 23314-23325, 2020.
[14] A. Dubois, S. Ricote, R. J. Braun, “Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology”, Journal of Power Sources, Vol. 369, pp. 65-77, 2017.
[15] L. He, H. Gao, Y. Xuan, F. Zhang, J. Ren, M. Chen, “Surface strain and co-doping effect on Sm and Y co-doped BaCeO3 in proton conducting solid oxide fuel cells”, Computational Materials Science, Vol. 202, pp. 111007, 2022.
[16] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon, “The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, Vol. 158, Issue 3-4, pp. 225-232, 2003.
[17] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1-8, 2015.
[18] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future”, Materials Reports: Energy, Vol. 1, Issue 1, pp. 100003, 2021.
[19] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, Vol. 45, Issue 44, pp. 23988-24013, 2020.
[20] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, Vol. 47, Issue 45, pp. 19810-19820, 2022.
[21] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, Vol. 3, Issue 2, pp. 113-121, 2001.
[22] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Technology”, ChemElectroChem, Vol. 3, Issue 4, pp. 511-530, 2015.
[23] W. Zhang, Y. H. Hu, “Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, Vol. 9, Issue 7, pp. 984-1011, 2021.
[24] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, Vol. 18-19, pp. 1003-1007, 1986.
[25] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, pp. 299-310, 2004.
[26] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, Vol. 143, 1996.
[27] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Prospect of hydrogen technology using proton-conducting ceramics”, Electrochemical and Solid-State Letters, Vol. 10(4), pp. B77-B80, 2007.
[28] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, Issue 1-2, pp. 91-98, 2000.
[29] A. Ayttimur, S. Koc¸yig˘it, I. Uslu, “Calcia Stabilized Ceria Doped Zirconia Nanocrystalline Ceramic”, Journal of Inorganic and Organometallic Polymers, Vol. 24, pp. 927-932, 2014.
[30] R. H. R. Castro, “Controlling sintering and grain growth of nanoceramics”, Cerâmica, Vol. 65, 2019.
[31] R. M. German, “Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems”, Critical Reviews in Solid State and Materials Sciences, Vol. 35, pp. 263-305, 2010.
[32] S. J. L. Kang, Sintering: densification, grain growth & microstructure, Elsevier, New York, 2005.
[33] S. Y. Toor, E. Croiset, “Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria”, Ceramics International, Vol. 46, Issue 1, pp. 1148-1157, 2020.
[34] W. Sun, Z. Shi, M. Liu, L. Bi, W. Liu, “An Easily Sintered, Chemically Stable, Barium Zirconate-Based Proton Conductor for High-Performance Proton-Conducting Solid Oxide Fuel Cells”, Advanced Functional Materials, Vol. 24, Issue 36, pp. 5695-5702, 2014.
[35] K. R. Lee, C. J. Tseng, S. C. Jang, J. C. Lin, K. W. Wang, J. K. Chang, T. C. Chen, S. W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy, Vol. 44, Issue 42, pp. 23784-23792, 2019.
[36] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 156, pp. 111985, 2022.
[37] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, Vol. 47, Issue 2, pp. 1103-1120, 2022.
[38] C. M. Harrison, P. R. Slater, R. S. Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, Vol. 354, pp. 115410, 2020.
[39] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, Vol. 39, Issue 2, pp. 1014-1022, 2014.
[40] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, Vol. 54, Issue 12, pp. 3309-3315, 2009.
[41] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol. 39, Issue 28, pp. 15754-15759, 2014.
[42] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, Vol. 44, Issue 44, pp. 8296-8313, 2020.
[43] L. S. Mahmud, A. Muchtar, M. R. Somalu, “Challenges in fabricating planar solid oxide fuel cells: A review”, Renewable and Sustainable Energy Reviews, Vol. 72, pp. 105-116, 2017.
[44] M. O. Mavukkandy, S. A. McBride, D. M. Warsinger, N. Dizge, S. W. Hasan, H. A. Arafat, “Thin film deposition techniques for polymeric membranes– A review”, Journal of Membrane Science, Vol. 610, pp. 118258, 2020.
[45] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, “Screen-printing inks for the fabrication of solid oxide fuel cell films: A review”, Renewable and Sustainable Energy Reviews, Vol. 75, pp. 426-439, 2017.
[46] Y. Xu, F. Tsumori, T. Osada, H. Miura, “Improvement of solid oxide fuel cell by imprinted micropatterns on electrolyte”, Micro & Nano Letters, Vol. 8, Issue 10, pp. 571-574, 2013.
[47] M. Brown, S. Primdahl, M. Mogensen, “Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 147(2), pp. 475-485, 2000.
[48] J. Patakangas, Y. Ma, Y. Jing, P. Lund, “Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)”, Journal of Power Sources, Vol. 263, pp. 315-331, 2014.
[49] J. A. Cebollero, R. Lahoz, M. A. L. Bercero, A. Larrea, “Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance”, Journal of Power Sources, Vol. 360, pp. 336-344, 2017.
[50] S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, “Review of SOFC Cathode Performance Enhancement by Surface Modifications: Recent Advances and Future Directions”, Energy Fuels, Vol. 37, Issue 5, pp. 3470-3487, 2023.
[51] M. Zhi, G. Zhou, Z. Hong, J. Wang, R. Gemmen, K. Gerdes, A. Manivannan, D. Ma, N. Wu, “Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxidefuel cell”, Energy & Environmental Science, Issue 1, 2011.
[52] R. O’Hayre, F. B. Prinz, “The Air/Platinum/Nafion Triple-Phase Boundary: Characteristics, Scaling, and Implications for Fuel Cells”, Journal of The Electrochemical Society, Vol. 151(5), pp. A756-A762, 2004.
[53] P. V. C. K. Subhashini, K. V. D. Rajesh, “Doped BSCF cathode materials for low-temperature solid oxide fuel cell applications-A short review”, Materials Today: Proceedings, Vol. 78, pp. 520-523, 2023.
[54] S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, “Review of SOFC Cathode Performance Enhancement by Surface Modifications: Recent Advances and Future Directions”, Energy & Fuels, Vol. 37, pp. 3470-3487, 2023.
[55] N. N. M. Tahir, N. A. Baharuddin, A. A. Samat, N. Osman, M. R. Somalu, “A review on cathode materials for conventional and proton-conducting solid oxide fuel cells”, Journal of Alloys and Compounds, Vol. 894, pp. 162458.
[56] J. Bai, D. Zhou, X. Zhu, N. Wang, R. Chen, B. Wang, “New SOFC Cathode: 3D Core–Shell-Structured La0.6Sr0.4Co0.2Fe0.8O3−δ@PrO2−δ Nanofibers Prepared by Coaxial Electrospinning”, ACS Applied Energy Materials, Vol. 5, pp. 11178-11190, 2022.
[57] T. Yang, Y. Wen, T. Wu, N. Xu, K. Huang, “A highly active and Cr-resistant infiltrated cathode for practical solid oxide fuel cells”, Journal of Materials Chemistry A, Issue 1, 2020.
[58] W. Zhang, L. Zhang, K. Gaun, X. Zhang, J. Meng, H. Wang, X. Liu, J. Meng, “Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 446, pp. 227360, 2020.
[59] N. N. M. Tahir, N. A. Baharuddin, A. A. Samat, N. Osman, M. R. Somalu, “A review on cathode materials for conventional and proton-conducting solid oxide fuel cells”, Journal of Alloys and Compounds, Vol. 894, pp. 162458, 2022.
[60] A. S. Habiballah, N. Osman, A. M. M. Jani, “Microstructural investigation of BSCF-based cathode material for enhanced oxygen reduction reaction performance and electrode stability”, Ceramics International, Vol. 46, Issue 14, pp. 23262-23265, 2020.
[61] A. Seong, D. Jeong, M. Kim, S. Choi, G. Kim, “Performance comparison of composite cathode: Mixed ionic and electronic conductor and triple ionic and electronic conductor with BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for highly efficient protonic ceramic fuel cells”, Journal of Power Sources, Vol. 530, pp. 231241, 2022.
[62] C. Lee, S. S. Shin, J. Choi, J. Kim, J. W. Son, M. Choi, H. H. Shin, “A micro-patterned electrode/electrolyte interface fabricated by soft-lithography for facile oxygen reduction in solid oxide fuel cells”, Journal of Materials Chemistry A, Issue 32, 2020.
[63] N. F. Bessette II, W. J. Wepfer, J. Winnick, “A Mathematical Model of a Solid Oxide Fuel Cell”, Journal of the Electrochemical Society, Vol. 142, pp. 3792-3800, 1995.
[64] H. Shimada, K. Takizawa, H. Michibata, A. Hagiwara, “Microstructure Control Using Impregnation of LSM in a Thin Porous Electrolyte Layer”, Journal of the Electrochemical Society, Vol. 7(1), pp. 1119-1128, 2007.
[65] W. P. Pan, Z. Lü, Y. H. Zhang, X. Q. Huang, B. Wei, Z. H. Wang, W. H. Su, “Improved Electrodes/Electrolyte Interfaces for Solid Oxide Fuel Cell by Using Dual-Sized Powders in Electrolyte Slurry”, Fuel Cells, Vol. 12, Issue 5, pp. 732-738, 2012.
[66] S. Ji, I. Chang, Y. H. Lee, M. H. Lee, S. W. Cha, “Performance enhancement of thin-film ceramic electrolyte fuel cell using bi-layered yttrium-doped barium zirconate”, Thin Solid Films, Vol. 539, pp. 117-121, 2013.
[67] H. Dai, S. He, H. Chen, L. Guo, “A novel method of modifying electrolyte surface at mesoscale for intermediate-temperature solid oxide fuel cells”, Ceramics International, Vol. 42, Issue 1, pp. 2045-2050, 2016.
[68] G. Cai, Y. Gu, L. Ge, Y. Zhang, H. Chen, L. Guo, “Modification of electrolyte surface with “windows” and “dimples array” structure for SOFC based on YSZ electrolyte”, Ceramics International, Vol. 43, Issue 12, pp. 8944-8950, 2017.
[69] C. Timurkutluk, T. Altan, F. Yildirim, S. Onbilgin, M. Yagiz, B. Timurkutluk, “Improving the electrochemical performance of solid oxide fuel cells by surface patterning of the electrolyte”, Journal of Power Sources, Vol. 512, pp. 230489, 2021.
[70] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, Vol. 43, Issue 7, pp. 2423-2446, 2018.
[71] E. H. Kang, H. R. Choi, J. S. Park, K. H. Kim, D. H. Kim, K. Bae, F. B. Prinz, J. H. Shim, “Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3- δ thin-film electrolytes”, Journal of Power Sources, Vol. 465, pp. 228254, 2020.
[72] B. K. Park, S. A. Barnett, “Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration”, Journal of Materials Chemistry A, Issue 23, 2020.
[73] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016.
[74] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, Vol. 25, pp. 185705, 2014.
[75] L. M. Keller, L. Holzer, R. Wepf, P. Gasser, B. Münch, P. Marschall, “On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay”, Physics and Chemistry of the Earth, Vol. 36, pp. 1539-1544, 2011.
[76] I. Rousso, A. Deshpande, “Applications of Atomic Force Microscopy in HIV-1 Research”, Viruses, Vol. 14, Issue 3, pp. 648, 2022.
[77] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, Vol. 131, Issue 1-2, pp. 189-198, 2000.
[78] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 156, pp. 111985, 2022.
[79] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol. 52, Issue 28, pp. 8144-8164, 2007.
[80] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, Vol. 36, Issue 12, pp. 7212-7228, 2011.
[81] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, Vol. 258, pp. 164-181, 2014.
[82] S. Nikodemski, J. Tong, R. O′Hayre, “Solid-state reactive sintering mechanism for proton conducting ceramics”, Solid State Ionics, Vol, 253, pp. 201-210, 2013.
[83] M. Sedlaček, B. Podgornik, J. Vižintin, “Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces”, Tribology International, Vol. 48, pp. 102-112, 2012.
[84] H. Shimada, T. Yamaguchi, H. Sumi, Y. Yamaguchi, K. Nomura, Y. Mizutani, Y. Fujishiro, “A Key for Achieving Higher Open-Circuit Voltage in Protonic Ceramic Fuel Cells: Lowering Interfacial Electrode Polarization”, ACS Applied Energy Materials, Vol. 2, pp. 587-597, 2019. |