博碩士論文 110323069 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.129.25.212
姓名 吳嘉恩(Jia-En Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電解質陰極界面微結構設計以提升固態氧化物燃料電池性能之研究
(Effect of Electrolyte And Cathode Interface Microstructure on the Performance of Solid Oxide Fuel Cells)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究開發出一種新方法能夠改善電極與電解質之間接觸的界面層。透過不同的預燒結溫度(Pre-sinter temperature)於緻密的BCZY電解質層上製備出多孔層,應用於質子傳導型固態氧化物燃料電池中電解質 與 陰極之間,進一步研究溫度的變化對多孔層微觀結構與電池性能之影響。由於預燒結溫度愈低, BCZY粉末顆粒難以成長; 隨著 預燒結溫度提高,顆粒則會互相連結形成不緻密的凹坑,有助於陰極 漿 料陷入其中;但當溫度過高接近電池燒結溫度,反而容易導致封閉孔洞的形成。本研究目標旨在優化電解質與陰極之間的接觸界面並擴增電化學活性區域,降低電池內的界面阻抗進而實現更高的功率密度。

研究結果顯示,在四種不同預燒結溫度中,於1350 ℃下進行預燒結1小時後製備出的BCZY電解質多孔界面層具有較佳之電池性能,其在操作溫度800 ℃下之最高功率密度數值達到516.5 mW/cm2,其歐姆阻抗與極化阻抗分別為1.646 Ω·cm2及0.016 Ω·cm2,與未添加BCZY電解質多孔界面層之電池相比,最高功率密度提升了11.5%。儘管電解質多孔界面層稍微延長了質子傳輸之距離,造成歐姆阻抗略微提升,但因擴增電化學活性區域與三相邊界點位,使極化阻抗成功下降23.8%。
摘要(英) This research has developed a new method that can improve the interfacial layer of contact between the electrode and the electrolyte. The porous layer was prepared on the dense BCZY electrolyte layer through different pre-sinter temperature, and it was applied between the electrolyte and the cathode in the proton-conducting solid oxide fuel cell, and further studied the effect of temperature changes on the microscopic structure and cell performance. As the pre-sinter temperature is lower, it is difficult for BCZY powder particles to grow; as the pre-sinter temperature increases, the particles will be connected to each other to form non-dense pits, which will help the cathode slurry to sink into them. However, when the temperature is too high and close to the sintering temperature of the battery, it will easily lead to the formation of closed pores. The goal of the research is to optimize the contact interface between the electrolyte and the cathode and expand the electrochemically active area, reduce the interfacial impedance in the cell and achieve higher power density.
The research results show that among four different pre-sinter temperatures, the BCZY electrolyte porous interface layer prepared after pre-sintering at 1350 °C for 1 hour has the better cell performance, and its highest power density value at 800 °C is about 516.5 mW/cm2, and its ohmic resistance and polarization resistance are 1.646 Ω‧cm2 and 0.016 Ω‧cm2, respectively. Compared with the cell without BCZY electrolyte porous interface layer, the highest power density has increased by 11.5%. Although the porous interface layer of the electrolyte slightly prolongs the distance of proton transmission, resulting in a slight increase in ohmic resistance. The polarization resistance is successfully reduced by 23.8% due to the expansion of the electrochemically active area and the three-phase boundary points.
關鍵字(中) ★ 質子傳導固態氧化物燃料電池
★ 電解質
★ 多孔層
★ 界面微結構
關鍵字(英)
論文目次 碩博士論文電子檔授權書 II
論文指導教授推薦書 IV
論文口試委員審定書 V
摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVI
第一章、緒論 1
1-1 前言 1
1-2 燃料電池 3
1-3 固態氧化物燃料電池 4
1-3-1 SOFC原理 4
1-3-2 SOFC優點 6
1-4 P-SOFC材料之特性 7
1-4-1 P-SOFC電解質材料 9
1-4-2 電解質粉末燒結機制 11
1-4-3 P-SOFC陰極材料 13
1-5 P-SOFC電池之常規製備技術 15
1-5-1 刮刀成型技術(Tape casting methode) 15
1-5-2 乾壓成型技術(Dry pressing methode) 15
1-5-3 旋轉塗佈技術(Spin coating methode) 16
1-5-4 絲網印刷技術(Screen printing methode) 17
1-6 研究目的 18
第二章、文獻回顧 19
2-1 氧還原反應對SOFC之影響 19
2-2 電極與電解質間的界面接觸對SOFC之影響 22
第三章、實驗方法 26
3-1 實驗藥品 26
3-2 實驗製程設備 27
3-3 實驗流程與方法 28
3-3-1 電解質粉末製備 28
3-3-2 陽極支撐型之基板製備 29
3-3-3 BCZY電解質多孔界面層製備 30
3-3-4 單電池製備 32
3-4 電池分析儀器 33
3-4-1 X光繞射儀(X-Ray Diffraction, XRD) 33
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 34
3-4-3 聚焦離子束顯微鏡(Focus Ion Beam Microscope, FIB) 35
3-4-4 原子力顯微鏡(Atomic Force Microscope, AFM) 36
3-4-5 燃料電池I-V性能量測與分析 37
3-4-6 電化學交流阻抗量測與分析 40
第四章、結果與討論 42
4-1 有無BCZY電解質多孔界面層之材料分析 42
4-2 BCZY電解質多孔界面層之表面形貌分析 43
4-2-1 2D表面形貌分析 43
4-2-2 3D表面形貌分析 45
4-3 單電池電化學性能分析 51
4-3-1 I-V性能曲線量測與分析 51
4-3-2 交流阻抗量測與分析 53
4-4 BCZY電解質多孔界面層之橫截面形貌分析 62
第五章、結論與未來規劃 66
5-1 結論 66
5-2 未來規劃 67
參考文獻 68
參考文獻 [1] 〈應對氣候變化與生物多樣性保護的國際規則協同:演進、挑戰與中國選擇〉,取自http://journal.bit.edu.cn/fileBJLGDXXBSKB/journal/article/bjlgdxxbshkxb/2022/2/PDF/S20220194.pdf。
[2] 〈基礎四國參與全球氣候治理:歷史貢獻、新挑戰與對策〉,取自http://eer.hbue.edu.cn/_upload/article/files/f5/e1/b448880f4ba191c31064ad2d99aa/9eb0c076-61f7-45e4-b5ff-19cfcabe497e.pdf。
[3] 〈COP26格拉斯哥氣候公約出爐!減碳、抗暖「5大成就」一次看〉,取自https://www.ettoday.net/news/20211116/2125117.htm。
[4] 〈一次看懂2050淨零排放路徑及策略,影響台灣未來30年關鍵行動〉,取自https://www.digiknow.com.tw/knowledge/6258ee0d906b1。
[5] 〈《國際趨勢篇》 綠能趨勢轉向 氫經濟成顯學 全球瞄準兆元商機〉,取自https://www.trademag.org.tw/page/itemsd/?id=7873730&no=21。
[6] 〈加拿大風電製氫潛力高,與德國簽署跨大西洋氫供應協議〉,取自https://ynews.page.link/Kjjf2。
[7] 〈德國氫能政策發展現況〉,取自https://www.trade.gov.tw/Pages/Detail.aspx?nodeID=45&pid=757677。
[8] 〈溫室氣體排放統計〉,取自https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b。
[9] 〈臺灣2050淨零排放路徑及策略總說明〉,取自https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTA0MC8yZTZhZTA0Mi0wYjUyLTQ4OTAtOGY5NC1hYjk5MzgzNWZlZTIucGRm&n=6Ie654GjMjA1MOa3qOmbtuaOkuaUvui3r%2bW%2bkeWPiuetlueVpee4veiqquaYji5wZGY%3d&icon=.pdf。
[10] 〈臺灣2050淨零排放〉,取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1。
[11] F. Liu, C. Duan, “Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells”, Sustainability, Vol. 13, Issue 9, pp. 4736, 2021.
[12] I. T. Bello, S. Zhai, S. Zhai, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, Vol. 46, Issue 75, pp. 37406-37428, 2021.
[13] A. J. A. Aziz, N. A. Baharuddin, M. R. Somalu, A. Muchtar, “Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications”, Ceramics International, Vol. 46, Issue 15, pp. 23314-23325, 2020.
[14] A. Dubois, S. Ricote, R. J. Braun, “Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology”, Journal of Power Sources, Vol. 369, pp. 65-77, 2017.
[15] L. He, H. Gao, Y. Xuan, F. Zhang, J. Ren, M. Chen, “Surface strain and co-doping effect on Sm and Y co-doped BaCeO3 in proton conducting solid oxide fuel cells”, Computational Materials Science, Vol. 202, pp. 111007, 2022.
[16] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon, “The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, Vol. 158, Issue 3-4, pp. 225-232, 2003.
[17] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1-8, 2015.
[18] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future”, Materials Reports: Energy, Vol. 1, Issue 1, pp. 100003, 2021.
[19] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, Vol. 45, Issue 44, pp. 23988-24013, 2020.
[20] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, Vol. 47, Issue 45, pp. 19810-19820, 2022.
[21] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, Vol. 3, Issue 2, pp. 113-121, 2001.
[22] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Technology”, ChemElectroChem, Vol. 3, Issue 4, pp. 511-530, 2015.
[23] W. Zhang, Y. H. Hu, “Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, Vol. 9, Issue 7, pp. 984-1011, 2021.
[24] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, Vol. 18-19, pp. 1003-1007, 1986.
[25] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, pp. 299-310, 2004.
[26] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, Vol. 143, 1996.
[27] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Prospect of hydrogen technology using proton-conducting ceramics”, Electrochemical and Solid-State Letters, Vol. 10(4), pp. B77-B80, 2007.
[28] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, Issue 1-2, pp. 91-98, 2000.
[29] A. Ayttimur, S. Koc¸yig˘it, I. Uslu, “Calcia Stabilized Ceria Doped Zirconia Nanocrystalline Ceramic”, Journal of Inorganic and Organometallic Polymers, Vol. 24, pp. 927-932, 2014.
[30] R. H. R. Castro, “Controlling sintering and grain growth of nanoceramics”, Cerâmica, Vol. 65, 2019.
[31] R. M. German, “Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems”, Critical Reviews in Solid State and Materials Sciences, Vol. 35, pp. 263-305, 2010.
[32] S. J. L. Kang, Sintering: densification, grain growth & microstructure, Elsevier, New York, 2005.
[33] S. Y. Toor, E. Croiset, “Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria”, Ceramics International, Vol. 46, Issue 1, pp. 1148-1157, 2020.
[34] W. Sun, Z. Shi, M. Liu, L. Bi, W. Liu, “An Easily Sintered, Chemically Stable, Barium Zirconate-Based Proton Conductor for High-Performance Proton-Conducting Solid Oxide Fuel Cells”, Advanced Functional Materials, Vol. 24, Issue 36, pp. 5695-5702, 2014.
[35] K. R. Lee, C. J. Tseng, S. C. Jang, J. C. Lin, K. W. Wang, J. K. Chang, T. C. Chen, S. W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy, Vol. 44, Issue 42, pp. 23784-23792, 2019.
[36] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 156, pp. 111985, 2022.
[37] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, Vol. 47, Issue 2, pp. 1103-1120, 2022.
[38] C. M. Harrison, P. R. Slater, R. S. Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, Vol. 354, pp. 115410, 2020.
[39] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, Vol. 39, Issue 2, pp. 1014-1022, 2014.
[40] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, Vol. 54, Issue 12, pp. 3309-3315, 2009.
[41] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol. 39, Issue 28, pp. 15754-15759, 2014.
[42] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, Vol. 44, Issue 44, pp. 8296-8313, 2020.
[43] L. S. Mahmud, A. Muchtar, M. R. Somalu, “Challenges in fabricating planar solid oxide fuel cells: A review”, Renewable and Sustainable Energy Reviews, Vol. 72, pp. 105-116, 2017.
[44] M. O. Mavukkandy, S. A. McBride, D. M. Warsinger, N. Dizge, S. W. Hasan, H. A. Arafat, “Thin film deposition techniques for polymeric membranes– A review”, Journal of Membrane Science, Vol. 610, pp. 118258, 2020.
[45] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, “Screen-printing inks for the fabrication of solid oxide fuel cell films: A review”, Renewable and Sustainable Energy Reviews, Vol. 75, pp. 426-439, 2017.
[46] Y. Xu, F. Tsumori, T. Osada, H. Miura, “Improvement of solid oxide fuel cell by imprinted micropatterns on electrolyte”, Micro & Nano Letters, Vol. 8, Issue 10, pp. 571-574, 2013.
[47] M. Brown, S. Primdahl, M. Mogensen, “Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 147(2), pp. 475-485, 2000.
[48] J. Patakangas, Y. Ma, Y. Jing, P. Lund, “Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)”, Journal of Power Sources, Vol. 263, pp. 315-331, 2014.
[49] J. A. Cebollero, R. Lahoz, M. A. L. Bercero, A. Larrea, “Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance”, Journal of Power Sources, Vol. 360, pp. 336-344, 2017.
[50] S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, “Review of SOFC Cathode Performance Enhancement by Surface Modifications: Recent Advances and Future Directions”, Energy Fuels, Vol. 37, Issue 5, pp. 3470-3487, 2023.
[51] M. Zhi, G. Zhou, Z. Hong, J. Wang, R. Gemmen, K. Gerdes, A. Manivannan, D. Ma, N. Wu, “Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxidefuel cell”, Energy & Environmental Science, Issue 1, 2011.
[52] R. O’Hayre, F. B. Prinz, “The Air/Platinum/Nafion Triple-Phase Boundary: Characteristics, Scaling, and Implications for Fuel Cells”, Journal of The Electrochemical Society, Vol. 151(5), pp. A756-A762, 2004.
[53] P. V. C. K. Subhashini, K. V. D. Rajesh, “Doped BSCF cathode materials for low-temperature solid oxide fuel cell applications-A short review”, Materials Today: Proceedings, Vol. 78, pp. 520-523, 2023.
[54] S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, “Review of SOFC Cathode Performance Enhancement by Surface Modifications: Recent Advances and Future Directions”, Energy & Fuels, Vol. 37, pp. 3470-3487, 2023.
[55] N. N. M. Tahir, N. A. Baharuddin, A. A. Samat, N. Osman, M. R. Somalu, “A review on cathode materials for conventional and proton-conducting solid oxide fuel cells”, Journal of Alloys and Compounds, Vol. 894, pp. 162458.
[56] J. Bai, D. Zhou, X. Zhu, N. Wang, R. Chen, B. Wang, “New SOFC Cathode: 3D Core–Shell-Structured La0.6Sr0.4Co0.2Fe0.8O3−δ@PrO2−δ Nanofibers Prepared by Coaxial Electrospinning”, ACS Applied Energy Materials, Vol. 5, pp. 11178-11190, 2022.
[57] T. Yang, Y. Wen, T. Wu, N. Xu, K. Huang, “A highly active and Cr-resistant infiltrated cathode for practical solid oxide fuel cells”, Journal of Materials Chemistry A, Issue 1, 2020.
[58] W. Zhang, L. Zhang, K. Gaun, X. Zhang, J. Meng, H. Wang, X. Liu, J. Meng, “Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 446, pp. 227360, 2020.
[59] N. N. M. Tahir, N. A. Baharuddin, A. A. Samat, N. Osman, M. R. Somalu, “A review on cathode materials for conventional and proton-conducting solid oxide fuel cells”, Journal of Alloys and Compounds, Vol. 894, pp. 162458, 2022.
[60] A. S. Habiballah, N. Osman, A. M. M. Jani, “Microstructural investigation of BSCF-based cathode material for enhanced oxygen reduction reaction performance and electrode stability”, Ceramics International, Vol. 46, Issue 14, pp. 23262-23265, 2020.
[61] A. Seong, D. Jeong, M. Kim, S. Choi, G. Kim, “Performance comparison of composite cathode: Mixed ionic and electronic conductor and triple ionic and electronic conductor with BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for highly efficient protonic ceramic fuel cells”, Journal of Power Sources, Vol. 530, pp. 231241, 2022.
[62] C. Lee, S. S. Shin, J. Choi, J. Kim, J. W. Son, M. Choi, H. H. Shin, “A micro-patterned electrode/electrolyte interface fabricated by soft-lithography for facile oxygen reduction in solid oxide fuel cells”, Journal of Materials Chemistry A, Issue 32, 2020.
[63] N. F. Bessette II, W. J. Wepfer, J. Winnick, “A Mathematical Model of a Solid Oxide Fuel Cell”, Journal of the Electrochemical Society, Vol. 142, pp. 3792-3800, 1995.
[64] H. Shimada, K. Takizawa, H. Michibata, A. Hagiwara, “Microstructure Control Using Impregnation of LSM in a Thin Porous Electrolyte Layer”, Journal of the Electrochemical Society, Vol. 7(1), pp. 1119-1128, 2007.
[65] W. P. Pan, Z. Lü, Y. H. Zhang, X. Q. Huang, B. Wei, Z. H. Wang, W. H. Su, “Improved Electrodes/Electrolyte Interfaces for Solid Oxide Fuel Cell by Using Dual-Sized Powders in Electrolyte Slurry”, Fuel Cells, Vol. 12, Issue 5, pp. 732-738, 2012.
[66] S. Ji, I. Chang, Y. H. Lee, M. H. Lee, S. W. Cha, “Performance enhancement of thin-film ceramic electrolyte fuel cell using bi-layered yttrium-doped barium zirconate”, Thin Solid Films, Vol. 539, pp. 117-121, 2013.
[67] H. Dai, S. He, H. Chen, L. Guo, “A novel method of modifying electrolyte surface at mesoscale for intermediate-temperature solid oxide fuel cells”, Ceramics International, Vol. 42, Issue 1, pp. 2045-2050, 2016.
[68] G. Cai, Y. Gu, L. Ge, Y. Zhang, H. Chen, L. Guo, “Modification of electrolyte surface with “windows” and “dimples array” structure for SOFC based on YSZ electrolyte”, Ceramics International, Vol. 43, Issue 12, pp. 8944-8950, 2017.
[69] C. Timurkutluk, T. Altan, F. Yildirim, S. Onbilgin, M. Yagiz, B. Timurkutluk, “Improving the electrochemical performance of solid oxide fuel cells by surface patterning of the electrolyte”, Journal of Power Sources, Vol. 512, pp. 230489, 2021.
[70] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, Vol. 43, Issue 7, pp. 2423-2446, 2018.
[71] E. H. Kang, H. R. Choi, J. S. Park, K. H. Kim, D. H. Kim, K. Bae, F. B. Prinz, J. H. Shim, “Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3- δ thin-film electrolytes”, Journal of Power Sources, Vol. 465, pp. 228254, 2020.
[72] B. K. Park, S. A. Barnett, “Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration”, Journal of Materials Chemistry A, Issue 23, 2020.
[73] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016.
[74] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, Vol. 25, pp. 185705, 2014.
[75] L. M. Keller, L. Holzer, R. Wepf, P. Gasser, B. Münch, P. Marschall, “On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay”, Physics and Chemistry of the Earth, Vol. 36, pp. 1539-1544, 2011.
[76] I. Rousso, A. Deshpande, “Applications of Atomic Force Microscopy in HIV-1 Research”, Viruses, Vol. 14, Issue 3, pp. 648, 2022.
[77] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, Vol. 131, Issue 1-2, pp. 189-198, 2000.
[78] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 156, pp. 111985, 2022.
[79] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol. 52, Issue 28, pp. 8144-8164, 2007.
[80] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, Vol. 36, Issue 12, pp. 7212-7228, 2011.
[81] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, Vol. 258, pp. 164-181, 2014.
[82] S. Nikodemski, J. Tong, R. O′Hayre, “Solid-state reactive sintering mechanism for proton conducting ceramics”, Solid State Ionics, Vol, 253, pp. 201-210, 2013.
[83] M. Sedlaček, B. Podgornik, J. Vižintin, “Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces”, Tribology International, Vol. 48, pp. 102-112, 2012.
[84] H. Shimada, T. Yamaguchi, H. Sumi, Y. Yamaguchi, K. Nomura, Y. Mizutani, Y. Fujishiro, “A Key for Achieving Higher Open-Circuit Voltage in Protonic Ceramic Fuel Cells: Lowering Interfacial Electrode Polarization”, ACS Applied Energy Materials, Vol. 2, pp. 587-597, 2019.
指導教授 曾重仁 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明