國立中央大學113學年度碩士班考試入學試題

所別: 光電類

第1頁/共2頁

科目: 電子學

*本科考試可使用計算器,廠牌、功能不拘

本試題共四大題計算題,無計算過程不予計分。答案請標示單位。

- 1. (20%) A voltage amplifier with an input resistance R_i =5 k Ω and output resistance Ro=3 k Ω has an open-circuit voltage gain ($A_{\nu o}$) of 50 V/V (assuming frequency-independent). The amplifier is then capacitance-coupled to a 10 k Ω source and 1 k Ω load as shown in Fig.1.
 - (a) (10%) What is the overall voltage gain $(\frac{v_0}{v_s})$ for DC and high frequency $(f \to \infty)$? Please describe the circuit as working as a low-pass, high-pass, or mid-pass filter.
 - (b) (10%) What is the smallest C_l and C_2 needed to make sure the cut-off frequency is less than 100 kHz? (You can separate input and output capacitors separately for a simple answer)

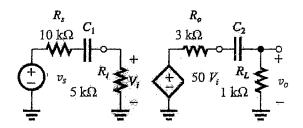
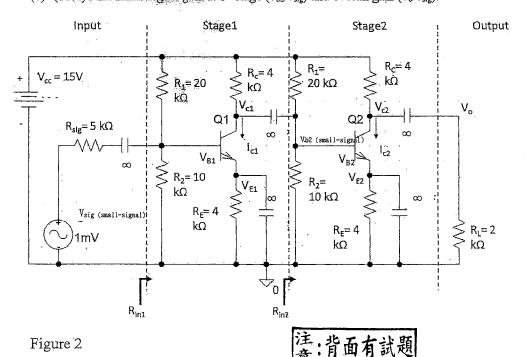
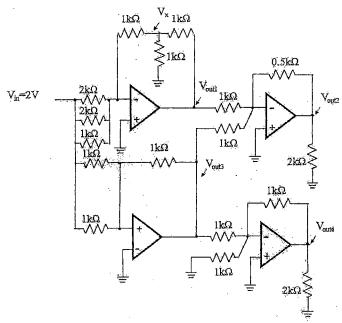



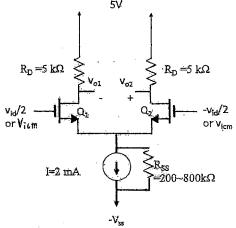
Figure 1

- (30%) For the following BJT circuit in Fig. 2, two identical BJTs with β=100 are connected in cascade and used to amplify the signal. Please find the follows: (hints: you can assume V_{BE}=0.7V)
 - (a) (12%) Determine the biasing current (I_{C1} , I_{C2}), base voltage (V_{B1} , V_{B2}), and collector voltage (V_{C1} , V_{C2}).
 - (b) (18%) Find small-signal gain at 1st stage (v_{b2}/v_{sig}) and overall gain (v_0/v_{sig}) .

國立中央大學 113 學年度碩士班考試入學試題


所別: 光電類

第三頁 / 共三頁


科目: 電子學

*本科考試可使用計算器,廠牌、功能不拘

3. (20%) For the circuit in Figure 3, assuming OP amplifiers are ideal, please find the voltage of the correspond nodes, V_x , V_{out} .

- Figure 3
- 4. (30%) Refer the circuit shown in Fig. 4, a MOSFET differential pair is driven by a current source and connected with a variable resistance R_{SS} (200~800 k Ω). All MOSFETs are assumed to be the same with $V_i=1V$, $\mu_n C_{ox}=1$ mA/V² and W/L=40 for NMOS. Please evaluate the following:
 - (a) (10%) Please find the differential gain (A_d=v_{od}/v_{id}) if the MOSFETs are operated in the saturation regime. Hint: y_{od}=v_{o2}-v_{o1}
 - (b) (10%) If we apply the common-mode signal (v_{iem}) on both inputs. What is the minimal common-mode gain (v_{oi}/v_{iem}) at a single end by varying the R_{ss} ?
 - (c) (10%) If the V_{min} required for the current sources is 0.5 V and both gate voltage at Q_1 and Q_2 are grounded. What is the restriction on V_{ss} for the operation regime of a differential amplifier?

注:背面有試題

Figure 4