台灣聯合大學系統113學年度碩士班招生考試試題

類組:電機類 科目:工程數學 A(3003)

共7頁第1頁

多重選擇題,共20題,每題5分 每題每一選項(ABCDE)單獨計分,每一選項個別分數為 / 分答錯一個選項倒扣1分,倒扣至<u>本大題(即多選題)</u>0分為止。

1. Find the solution of y' - y = 1. (Note: C is the constant)

(A)
$$y = C \cdot e^x$$

(B)
$$y = C \cdot e^x + 1$$

$$(C) y = C \cdot e^x - 1$$

(D)
$$y = (C + 1) \cdot e^x$$

(E)
$$y = (C-1) \cdot e^x$$

2. Find the solution of $(1 - x^2)y - xy' = 0$ (Note: C is the constant)

(A)
$$y = C\sqrt{1 - x^2}$$

(B)
$$y = \frac{c}{\sqrt{1-x^2}}$$

(C)
$$y = -\frac{1}{2}x^3 + Cx$$

(D)
$$y = Cxe^{-\frac{1}{2}x^2}$$

- (E) None of the above
- 3. Find the solution of y'' = sin(-x)(Note: C_1 , C_2 are the constant)

$$(A) y = sin(-x)$$

(B)
$$y = -\sin(-x)$$

(C)
$$y = -\sin(-x) + C_1x + C_2$$

(D)
$$y = sin(-x) + C_1x + C_2$$

- (E) None of the above
- 4. Find the solution of xy' + y = 3 (Note: C is the constant)

$$(A) \ \ y = \frac{c}{x} + 3$$

(C)
$$y = \frac{c}{x} - 3$$

(B)
$$y = \frac{3}{r} + C$$

$$(D) \ \ y = \frac{x}{c} - 3$$

類組:電機類 科目:工程數學 A(3003)

共_7_頁第_2_頁

5. For which values of m is the function $y = x^m$, a solution of the differential equation?

$$x^2y'' - 5xy' + 8y = 0$$

- (A) m = 2, 3
- (B) m = 2, 4
- (C) m = 3, 4
- (D) m = -2, -4
- (E) None of the above

6. In the Taylor's series expansion of e^{2x} about x = 3, the coefficient of $(x - 3)^5$ is

- $(A)^{1}/_{5!}$
- (B) $\frac{3^5}{5!}$
- (C) $^{16} \times e^6/_{6!}$
- (D) $^{32} \times e^6/_{5!}$
- (E) $64 \times e^6/_{41}$

7. Which of the following functions would have only even powers of x in its Taylor series expansion about the point $x = \frac{\pi}{2}$?

- $(A)\sin(2x+\pi/4)$
- $(\mathrm{B})\cos(3(x-\pi/2))$
- (C) $\exp(x^2 \pi)$
- $(\mathrm{D})^{\frac{1}{(1+x^2-\pi)}}$
- $(E)\frac{x}{(1+x^3-\pi)}$

類組:電機類 科目:工程數學 A(3003)

共_7_頁第_3_頁

8. Evaluate the following integral. $\int_{-\pi/2}^{\pi/2} \frac{1}{1+\sin^2\theta} d\theta$

$$(A)^{\pi^4}/_4$$

$$(B)^{\pi^3} / 2\sqrt{2}$$

(C)
$$\pi^2/_2$$

$$(D)^{\pi}/\sqrt{2}$$

(E)
$$\sqrt{\pi}/\sqrt{8}$$

9. Evaluate $\int_0^\infty \frac{dx}{1+x^{56}}$

(A)
$$\frac{\pi}{56\sin(\frac{\pi}{56})}$$

(B)
$$\frac{\pi}{28\sin(\frac{\pi}{28})}$$

(C)
$$\frac{\pi}{112\sin(\frac{\pi}{112})}$$

- (D) π
- (E) 2π

10. Evaluate the following integral $\oint_C \frac{Ln(z+1)}{z^2+1} dz$ C: |z-i|=1.4. Here Ln function denotes the principal part of natural logarithm function ln and is hence single-valued. What is the imaginary part of this integral?

- (A) $\frac{\pi^2}{8}$
- (B) $\frac{\pi^2}{4}$
- (C) $\frac{\pi}{4}$
- (D) $\frac{\pi}{8}$

(E) $\pi \ln(\sqrt{2})$

注:背面有試題

台灣聯合大學系統113學年度碩士班招生考試試題

類組:電機類 科目:工程數學 A(3003)

共_7_頁第_4_頁

- 11.Let $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$, which of the following descriptions are true?
 - (A) A is invertible.
 - (B) A is diagonalizable with real-valued eigenvalues.
 - (C) A is normal.
 - (D) A is Hermitian.
 - (E) A is unitary.
 - 12. Which of the following properties of the "determinant" of an $n \times n$ matrix are incorrect?
 - (A) We can use "cofactor expansion" to calculate the determinant along any row or column.
 - (B) For an invertible matrix, its determinant cannot be 0.
 - (C) For two $n \times n$ matrices: A and B, $det(AB) = det(A) \cdot det(B)$.
 - (D) If we apply elementary row operations to calculate a matrix's determinant, it requires less multiplications than using cofactor expansion.
 - (E) For an upper triangular matrix, its determinant is the product of the diagonal elements.
 - 13. Which of the following properties on subspace are correct?
 - (A) Every subspace contains infinite number of vectors.
 - (B) {0} is a subspace of any vector space.
 - (C) The basis of a subspace can be extended to a basis of the vector space that contains this subspace.
 - (D) The dimension of a subspace is less than the vector space that contains this subspace.
 - (E) The interception of any two subspaces contains at least one vector.
 - 14. For a linear transformation T: $R^3 \rightarrow R^3$ defined by: T(x, y, z) = (3x + 2y, -2x + 3y, 5z), which of the following statements are correct?
 - (A) The basis of the kernel (null space) of T is {0}.
 - (B) T is one to one.
 - (C) T is onto.
 - (D) T is invertible.
 - (E) T is diagonalizable.

注:背面有試題

類組:電機類 科目:工程數學 A(3003)

共_7_頁第_5_頁

15. For a 5x5 matrix:
$$A(t) = \begin{pmatrix} 6 & 1 & -2 & 0 & 0 \\ 2 & 2 & 3 & 2 & 2 \\ 4 & 3 & 1 & 3 & 4 \\ -1 & 3 & 2 & 0 & 0 \\ 2 & 1 & -1 + \cos t & 1 & 2 \end{pmatrix}$$
, which value of t will make $\det(A) = 0$?

- $(A) -\pi$
- (B) $-\pi/2$
- (C) 0
- (D) $\pi/2$
- (E) π

16. What are the corresponding eigen vectors for the matrix A having the following form,

$$A = \begin{pmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

(A)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

(B)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

(C)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$

(D)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$

(E)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

類組: 電機類 科目: 工程數學 A(3003)

共_7_頁第_6頁

17. Following the previous question, evaluate A^{2301} .

(A)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,

(B)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

(C)
$$\begin{pmatrix} 1 & 2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
,

(E)
$$\begin{pmatrix} 1 & -2 & 0 \\ 0 & -1 & 8 \\ 0 & 0 & -1 \end{pmatrix}$$

18. For a rectangle matrix $M = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$, how to find the corresponding singular value?

(A) By finding the eigen-values of
$$M = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$
,

- (B) By finding the eigen-values of $MM = M^2$
- (C) By finding the eigen-values of $\lim_{n\to\infty} M^n$
- (D) By finding the eigen-values of $\frac{M}{|M|}$
- (E) By finding the eigen-values of MM^t

台灣聯合大學系統113學年度碩士班招生考試試題

類組: 電機類 科目: 工程數學 A(3003)

共_7_頁第_7_頁

- 19. Following the previous question, find the largest singular value of the matrix M
- (A) 600
- (B) 360
- (C) $10\sqrt{6}$
- (D) $6\sqrt{10}$
- (E) $3\sqrt{6}$
- 20. Which of the following number β can make the matrix B being positive definite,

$$B = \begin{pmatrix} \beta & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \beta \end{pmatrix}$$

- (A) 1
- (B) 0
- (C) 1
- (D)2
- (E) i