博碩士論文 110326008 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.149.243.42
姓名 賴姿伃(Tzu-Yu Lai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 科學園區廢水廠污泥氣化產能效率及重金屬排放特性之研究
(Characterization of energy yield and heavy metal emission in gasification of sludge derived from science park wastewater treatment plant)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-31以後開放)
摘要(中) 本研究主要探討科學園區廢水處理廠衍生污泥,氣化處理轉換產能之可行性,實驗分別控制氣化溫度(700~900℃)及添加不同比例(5%、10%、15%)白雲石及橄欖石作為礦石催化劑之條件,探討污泥產氣組成及產能效率之影響,同時評估污泥所含微量重金屬之排放特性,此外,研究亦針對添加橄欖石催化劑之重複利用性,進行試驗與評估。
氣化試驗結果顯示,氣化溫度由700℃增加至900℃時,主要產氣階段(5~16分鐘)之氫氣與一氧化碳產生比例,分別由5.27 vol.%及2.42 vol.%增加至11.38 vol.%及12.58 vol.%,產氣平均熱值由2.00 MJ/Nm3增加至6.14 MJ/Nm3,此係提高氣化溫度助於促進水氣及Boudouard等吸熱反應。添加白雲石及橄欖石作為礦石催化劑之試驗結果顯示,操作溫度為900℃時,添加10%白雲石試驗,主要產氣階段氫氣與一氧化碳組成比例,分別為13.32 vol.%及11.44 vol.%,而平均氣體熱值為6.15 MJ/Nm3。當添加5%橄欖石試驗,主要產氣階段氫氣與一氧化碳之組成比例,分別為10.73 vol.%及13.77 vol.%,此時平均氣體熱值為5.04 MJ/Nm3,整體而言,以白雲石作為礦石催化劑時,其催化效果使氣體產量及熱值明顯高於高溫氣化及添加橄欖石。此外,添加經三次回收之5%橄欖石試驗結果顯示,主要產氣階段氫氣與一氧化碳組成比例,分別介於12.48 vol.%~15.43 vol.%及6.63 vol.%~11.98 vol.%之間,且平均氣體熱值約為5.18 MJ/Nm3,上述所得數值均高於未回收狀態之5%橄欖石試驗結果,說明橄欖石經回收後,其催化效果優於新鮮橄欖石且具重複利用性。
重金屬排放特性及其物種模擬分析結果顯示,提升氣化溫度後,Zn之固相分布比例由77.25%增加至82.10%;添加白雲石與橄欖石後,分布比例分別由72.30%及86.27%增加至74.70%及90.27%,此係白雲石中CaO具吸附作用,且橄欖石中Fe2O3及SiO2分別以ZnFe2O4(s)、ZnSiO3(s)形式結晶所致;對5%橄欖石進行回收後,其分布比例則由91.49%增加至97.90%,說明橄欖石經回收後同時具備吸附及結晶方式捕捉金屬Zn。此外,特殊重金屬Mo、In及Ga在所有操作條件下,僅有In之固相分布比例,隨氣化溫度增加,由61.11%下降至25.03%,說明操作溫度對重金屬In有較顯著的影響。
整體而言,根據本研究成果已初步驗證,科學園區廢水污泥具氣化處理可行性,添加礦石催化劑後,可進一步提升氣體產量及熱值,其中橄欖石具重複利用之可行性,此外,本研究亦探討科學園區廢水污泥於氣化處理過程中,各類金屬元素之排放特性與物種模擬,因此,研究成果未來可提供相關廢水處理廠,針對其產生之衍生污泥,應用於此能源轉換技術,及處理過程中金屬元素排放控制之參考依據。
摘要(英) This research investigated the feasibility of energy conversion of sludge derived from the Science Park wastewater treatment plant by gasification. The experimental conditions were designed to controll gasification temperatures (700~900℃) and add different proportions (5%, 10%, 15%) of dolomite and olivine as mineral catalysts. This research aimed to study the effect on produced gas composition and energy production efficiency and evaluate the trace metals emission characteristics during sludge gasification. Meanwhile, the study was also conducted to assess the reusability of olivine catalysts.
Experimental results indicate that the hydrogen and carbon monoxide compositions increased from 5.27 vol.% and 2.42 vol.% to 11.38 vol.% and 12.58 vol.% with the temperature increasing from 700℃ to 900℃ during the major gas production phase (5~16 minutes), respectively. The average heating value of the produced gas increased significantly from 2.00 MJ/Nm3 to 6.14 MJ/Nm3. This is because higher gasification temperatures facilitate water gas and Boudouard reactions. Examining the effect of dolomite and olivine as mineral catalysts at 900℃,it was observed that the 10% dolomite addition resulted in hydrogen and carbon monoxide compositions of 13.32 vol.% and 11.44 vol.%, corresponding with an average gas heating value of 6.15 MJ/Nm3. Conversely, using 5% olivine yielded 10.73 vol.% for hydrogen and 13.77 vol.% for carbon monoxide, with an average gas heating value of 5.04 MJ/Nm3. In summary, dolomite proved to be a superior catalyst, significantly increasing produced gas yield and heating value compared to high-temperature gasification and the olivine addition. Furthermore, experiments involving the reuse of 5% olivine after three cycles demonstrated improved catalytic effects. The produced gas compositions were 12.48 vol.%~15.43 vol.% for hydrogen and 6.63 vol.%~11.98 vol.% for carbon monoxide, respectively. The average heating value of the produced gas was approximately 5.18 MJ/Nm3, higher than that of fresh olivines. It implied that the reused olivine could provide a superior catalytic performance after the recycling experiment.
According to the results of heavy metal emission characteristics and speciation simulation, the solid-phase partitioning percentage of Zn was increased from 77.25% to 82.10% with the increase in gasification temperature. However, in the case of dolomite and olivine addition, the Zn solid-phase partitioning percentage was increased from 72.30% and 86.27% to 74.70% and 90.27%, respectively. This is because dolomite and olivine containing CaO could adsorb the gas-phase Zn and the crystallization of ZnFe2O4(s) and ZnSiO3(s) facilitated by olivine containing Fe2O3 and SiO2. Regarding the olivine recyclability results, 5% reused olivine as a catalyst could also provide good Zn adsorption performance due to the adsorption and crystallization mechanism. The Zn solid-phase partitioning percentage was increased from 91.49% to 97.90%. Additionally, special heavy metals Mo, In, and Ga derived from sludge emission characteristics showed insignificant variations in solid-phase partitioning percentage with increased gasification temperatures. Except for In, the solid-phase partitioning percentage was decreased from 61.11% to 25.03% with an increase in temperature. It implied that In emissions could be significantly influenced by the gasification temperature.
In conclusion, the gasification of sludge derived from Science park′s wastewater treatment plant is feasible, and this research confirms it. The addition of tested mineral catalysts enhances produced gas yield and heating value, and the tested olivine exhibited promising recyclability. The study also investigates the emission characteristics of various metals during the gasification process, providing valuable insights for Science Park wastewater treatment plants regarding the strategy selection for sludge utilization in energy conversion techniques and controlling metal emissions.
關鍵字(中) ★ 污泥
★ 催化氣化
★ 白雲石
★ 橄欖石
★ 金屬分布
關鍵字(英) ★ Sludge
★ Catalytic gasification
★ Dolomite
★ Olivine
★ Metal partitioning
論文目次 摘要 i
Abstrat iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
附錄 xviii
第一章 前言 1
第二章 文獻回顧 5
2-1 廢水廠污泥現況分析 5
2-2 氣化技術原理及操作因子 6
2-2-1 原理及應用 6
2-2-2 氣化反應階段 8
2-2-3 操作因子 8
2-3 催化劑對氣化效率之影響 13
2-3-1 催化劑種類 13
2-3-2 催化劑運作機制 14
2-4 重金屬排放特性 16
2-4-1 操作條件 16
2-4-2 礦石添加劑 18
第三章 研究材料與方法 21
3-1 實驗材料 21
3-2 實驗方法 22
3-2-1 實驗設備 22
3-2-2 實驗操作條件與流程 23
3-3 分析項目及方法 27
3-3-1 廢水污泥基本特性分析 27
3-3-2 產物特性分析 31
3-3-3 質量平衡 33
3-3-4 能量平衡 35
3-3-5 重金屬模擬 36
第四章 結果與討論 39
4-1 材料之基本特性分析 39
4-2 熱動力反應特性 41
4-2-1 熱重損失及最大失重率變化結果 41
4-2-2 反應特性及活化能特性 43
4-3 氣化溫度對氣化反應之結果 47
4-3-1 質量平衡 47
4-3-2 產氣組成變化 53
4-3-3 產物產率及特性分析 58
4-3-4 產能效率評估 61
4-4 礦石催化劑對氣化反應之結果 68
4-4-1 質量平衡 68
4-4-2 產氣組成變化 77
4-4-3 產物產率及特性分析 85
4-4-4 產能效率評估 88
4-5 回收橄欖石對氣化反應之結果 96
4-5-1 質量平衡 96
4-5-2 產氣組成變化 102
4-5-3 產物產率及特性分析 106
4-5-4 產能效率評估 109
4-6 重金屬排放特性 119
4-6-1 鹼金及鹼土族金屬 119
4-6-2 難揮發性金屬 137
4-6-3 揮發特性金屬 150
4-6-4 特殊重金屬 154
第五章 結論與建議 161
5-1 結論 161
5-1-1 污泥基本特性分析及反應動力特性 161
5-1-2 氣化溫度對氣化產物與產能效率結果 161
5-1-3 床料添加對氣化產物與產能效率結果 162
5-1-4 回收橄欖石對氣化產物與產能效率結果 162
5-1-5 金屬元素排放結果 162
5-2 建議 164
參考文獻 165
附錄 175
參考文獻 Alam, M.T., Park, S.W., Lee, S.Y., Jeong, Y.O., Girolamo, A.D., Seo, Y.C., Choi, H.S., 2020. Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends. Energies 13.
Ameri, B., Hanini, S., Boumahdi, M., 2020. Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge. Renewable Energy 147, 1107-1119.
Ammar, M., Mutalib, M.I.A., Yusup, S., Inayat, A., Shahbaz, M., Ali, B., 2016. Influence of Effective Parameters on Product Gas Ratios in Sorption Enhanced Gasification. Procedia Engineering 148, 735-741.
Belevi, H., Langmeier, M., 2000. Factors Determining the Element Behavior in Municipal Solid Waste Incinerators. 2. Laboratory Experiments. Environmental engineering technology, 2507-2512.
Bencze, L., Ryś-Matejczuk, M., Yazhenskikh, E., Ziegner, M., Müller, M., 2016. Investigation of Vaporization of Alkali Metals from Solidified Gasifier Slags by Knudsen Effusion Mass Spectrometry. Energy & Fuels 30, 657-665.
Bhoi, P.R., Huhnke, R.L., Kumar, A., Indrawan, N., Thapa, S., 2018. Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy 163, 513-518.
Bubalo, A., Vouk, D., Maljković, D., Bolanča, T., 2022. Gasification of Sewage Sludge in a Rotary Kiln Reactor – A Case Study with Incorporation of Sewage Sludge Ash in Brick Production. Chemical and Biochemical Engineering Quarterly, 77-87.
Cao, Y., Bai, Y., Du, J., 2021. Air-gasification of pine sawdust using dolomite as in-bed material: Effects of gasification conditions on product characteristics. Energy Institute 95, 187-192.
Chai, Y., Gao, N., Wang, M., Wu, C., 2020. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chemical Engineering Journal 382.
Chan, W.P., Wang, J.-Y., 2018. Formation of synthetic sludge as a representative tool for thermochemical conversion modelling and performance analysis of sewage sludge – Based on a TG-FTIR study. Analytical and Applied Pyrolysis 133, 97-106.
Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W.C., Lim, T.T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721-744.
Cheah, S., Jablonski, W.S., Olstad, J.L., Carpenter, D.L., Barthelemy, K.D., Robichaud, D.J., Andrews, J.C., Black, S.K., Oddo, M.D., Westover, T.L., 2016. Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition. Green Chemistry 18, 6291-6304.
Chen, C.N., Yang, W.F., 1998. Metal volatility during plastic combustion. Environmental Science and Health 33, 783-799.
Chen, L., Liao, Y., Ma, X., 2019. Heavy metals volatilization characteristics and risk evaluation of co-combusted municipal solid wastes and sewage sludge without and with calcium-based sorbents. Ecotoxicol Environ Saf 182, 109370.
Chen, Y.H., Lan Thao Ngo, T.N., Chiang, K.Y., 2021. Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier. Hydrogen Energy 46, 14083-14095.
Cho, S.J., Jung, H.Y., Seo, Y.C., Kim, B.G., 2010. Studies on Gasification and Melting Characteristics of Automobile Shredder Residue. Environmental engineering science
Chu, Z., Gong, Z., Wang, Z., Zhang, H., Liu, L., Wu, J., Wang, J., 2021. Experimental study on gasification of oil sludge with steam and its char characteristic. Hazardous Materials 416, 125713.
Chun, Y.N., Kim, S.C., Yoshikawa, K., 2011. Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier. Applied Energy 88, 1105-1112.
Cortazar, M., Lopez, G., Alvarez, J., Amutio, M., Bilbao, J., Olazar, M., 2018. Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification. Energy 153, 455-463.
Cortazar, M., Lopez, G., Alvarez, J., Amutio, M., Bilbao, J., Olazar, M., 2019. Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed. Fuel 253, 1446-1456.
Cortazar, M., Santamaria, L., Lopez, G., Alvarez, J., Amutio, M., Bilbao, J., Olazar, M., 2021. Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. Industrial and Engineering Chemistry 99, 364-379.
Davis, J.R., 1997. Heat-resistant materials. 365.
Devi, L., Ptasinski, K.J., Janssen, F.J.J.G., van Paasen, S.V.B., Bergman, P.C.A., Kiel, J.H.A., 2005. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy 30, 565-587.
Downs, A.J., 1993. Chemistry of aluminium, gallium, indium, and thallium.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel 212, 88-94.
Freda, C., Nanna, F., Villone, A., Barisano, D., Brandani, S., Cornacchia, G., 2019. Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln. International Journal of Energy and Environmental Engineering 10, 335-346.
Gallo, A., Alonso, E., Pérez-Rábago, C., Fuentealba, E., Roldán, M.I., 2019. A lab-scale rotary kiln for thermal treatment of particulate materials under high concentrated solar radiation: Experimental assessment and transient numerical modeling. Solar Energy 188, 1013-1030.
Gao, N., Kamran, K., Quan, C., Williams, P.T., 2020. Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science 79.
García, G., Campos, E., Fonts, I., Sánchez, J.L., Herguido, J., 2013. Gas Catalytic Upgrading in a Two-Zone Fluidized Bed Reactor Coupled to a Cogasification Plant. Energy & Fuels 27, 2835-2845.
Gong, Z., Liu, L., Zhang, H., Wang, Z., Wu, J., Guo, Y., Zhang, J., 2021. Study on migration characteristics of heavy metals during the oil sludge incineration with CaO additive. Chemical Engineering Research and Design 166, 55-66.
González-Arias, J., Berdugo-Vilches, T., Mandviwala, C., Cañete-Vela, I., Seemann, M., Thunman, H., 2023. Effect of biomass ash on preventing aromatization of olefinic cracking products in dual fluidized bed systems. Fuel 338.
Gruyter, W.d., 1994. Concise encyclopedia chemistry. 438.
Hamad, M.A., Radwan, A.M., Heggo, D.A., Moustafa, T., 2016. Hydrogen rich gas production from catalytic gasification of biomass. Renewable Energy 85, 1290-1300.
Hervy, M., Olcese, R., Bettahar, M.M., Mallet, M., Renard, A., Maldonado, L., Remy, D., Mauviel, G., Dufour, A., 2019. Evolution of dolomite composition and reactivity during biomass gasification. Applied Catalysis A: General 572, 97-106.
Ionescu, G., Tirtea, R.N., Gheorghe-Bulmau, C., Marculescu, C., 2020. Gas yield variation in wood biomass co-current air gasification process - Continuous operation, E3S Web of Conferences.
Islam, M.W., 2020a. Effect of different gasifying agents (steam, H2O2, oxygen, CO2, and air) on gasification parameters. Hydrogen Energy 45, 31760-31774.
Islam, M.W., 2020b. A review of dolomite catalyst for biomass gasification tar removal. Fuel 267.
Jeong, Y.S., Choi, Y.K., Park, K.B., Kim, J.S., 2019. Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal. Energy 185, 708-716.
Karatas, H., Olgun, H., Akgun, F., 2013. Coal and coal and calcined dolomite gasification experiments in a bubbling fluidized bed gasifier under air atmosphere. Fuel Processing Technology 106, 666-672.
Kern, S., Pfeifer, C., Hofbauer, H., 2013. Reactivity tests of the water–gas shift reaction on fresh and used fluidized bed materials from industrial DFB biomass gasifiers. Biomass and Bioenergy 55, 227-233.
Kirnbauer, F., Hofbauer, H., 2011. Investigations on Bed Material Changes in a Dual Fluidized Bed Steam Gasification Plant in Güssing, Austria. Energy & Fuels 25, 3793-3798.
Kirnbauer, F., Hofbauer, H., 2013. The mechanism of bed material coating in dual fluidized bed biomass steam gasification plants and its impact on plant optimization. Powder Technology 245, 94-104.
Kittivech, T., Fukuda, S., 2019. Effect of Bed Material on Bed Agglomeration for Palm Empty Fruit Bunch (EFB) Gasification in a Bubbling Fluidised Bed System. Energies 12.
Knutsson, P., Cantatore, V., Seemann, M., Tam, P.L., Panas, I., 2018. Role of potassium in the enhancement of the catalytic activity of calcium oxide towards tar reduction. Applied Catalysis B: Environmental 229, 88-95.
Kuba, M., Havlik, F., Kirnbauer, F., Hofbauer, H., 2016a. Influence of bed material coatings on the water-gas-shift reaction and steam reforming of toluene as tar model compound of biomass gasification. Biomass and Bioenergy 89, 40-49.
Kuba, M., He, H., Kirnbauer, F., Skoglund, N., Boström, D., Öhman, M., Hofbauer, H., 2016b. Mechanism of Layer Formation on Olivine Bed Particles in Industrial-Scale Dual Fluid Bed Gasification of Wood. Energy & Fuels 30, 7410-7418.
Kuhn, J.N., Zhao, Z., Felix, L.G., Slimane, R.B., Choi, C.W., Ozkan, U.S., 2008. Olivine catalysts for methane- and tar-steam reforming. Applied Catalysis B: Environmental 81, 14-26.
Kumoro, A.C., Wulandari, W., Subagjo, Tri Mursito, A., Juanjaya, F.J., Alwi, M.F., Hadiyanto, Roces, S.A., Yung, L., Rong, X., Lothongkum, A.W., Phong, M.T., Hussain, M.A., Daud, W.R.W., Nam, P.T.S., 2018. Performance of Dolomite Calcination in a Bench-Scale Rotary Kiln. MATEC Web of Conferences 156.
Kwong, K.Y., Mleczko, L., Moujar Bakhti, W., Dennis, J.S., Marek, E.J., 2022. Predictions of burnout times of biomass char using experimentally determined CO to CO2 ratio. Chemical Engineering Journal 450.
Lane, D.J., Jokiniemi, J., Heimonen, M., Peraniemi, S., Kinnunen, N.M., Koponen, H., Lahde, A., Karhunen, T., Nivajarvi, T., Shurpali, N., Sippula, O., 2020. Thermal treatment of municipal solid waste incineration fly ash: Impact of gas atmosphere on the volatility of major, minor, and trace elements. Waste Management 114, 1-16.
Lazzarotto, I.P., Ferreira, S.D., Junges, J., Bassanesi, G.R., Manera, C., Perondi, D., Godinho, M., 2020. The role of CaO in the steam gasification of plastic wastes recovered from the municipal solid waste in a fluidized bed reactor. Process Safety and Environmental Protection 140, 60-67.
Lewandowski, W.M., Januszewicz, K., Kosakowski, W., 2019. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review. Analytical and Applied Pyrolysis 140, 25-53.
Li, H., Wang, Y., Zhou, N., Dai, L., Deng, W., Liu, C., Cheng, Y., Liu, Y., Cobb, K., Chen, P., Ruan, R., 2021. Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification – A review. Cleaner Production 291.
Li, M., Su, P., Guo, Y., Zhang, W., Mao, L., 2017. Effects of SiO2, Al2O3 and Fe2O3 on leachability of Zn, Cu and Cr in ceramics incorporated with electroplating sludge. Environmental Chemical Engineering 5, 3143-3150.
Liu, X.Y., Specht, E., 2006. Mean residence time and hold-up of solids in rotary kilns. Chemical Engineering Science 61, 5176-5181.
Ljung, A., Nordin, A., 1997. Theoretical Feasibility for Ecological Biomass Ash Recirculation: Chemical Equilibrium Behavior of Nutrient Elements and Heavy Metals during Combustion. Environmental engineering technology 31, 2499-2503.
Martínez, I., Kulakova, V., Grasa, G., Murillo, R., 2020. Experimental investigation on sorption enhanced gasification (SEG) of biomass in a fluidized bed reactor for producing a tailored syngas. Fuel 259.
Mauerhofer, A.M., Benedikt, F., Schmid, J.C., Fuchs, J., Müller, S., Hofbauer, H., 2018. Influence of different bed material mixtures on dual fluidized bed steam gasification. Energy 157, 957-968.
Mauerhofer, A.M., Fuchs, J., Müller, S., Benedikt, F., Schmid, J.C., Hofbauer, H., 2019. CO2 gasification in a dual fluidized bed reactor system: Impact on the product gas composition. Fuel 253, 1605-1616.
Mphahlele, K., Matjie, R.H., Osifo, P.O., 2021. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis. Environmental Management 284, 112006.
Naqvi, S.R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.H., Ceylan, S., Rashid, H., Ahmad, J., Taqvi, S.A., Shahbaz, M., 2019. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy 131, 854-860.
Nipattummakul, N., Ahmed, I.I., Kerdsuwan, S., Gupta, A.K., 2010. Hydrogen and syngas production from sewage sludge via steam gasification. Hydrogen Energy 35, 11738-11745.
Oladejo, J., Shi, K., Luo, X., Yang, G., Wu, T., 2018. A Review of Sludge-to-Energy Recovery Methods. Energies 12.
Pieper, C., Wirtz, S., Schaefer, S., Scherer, V., 2021. Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns. Fuel 283.
Puig-Gamero, M., Lara-Díaz, J., Valverde, J.L., Sanchez-Silva, L., Sánchez, P., 2018. Dolomite effect on steam co-gasification of olive pomace, coal and petcoke: TGA-MS analysis, reactivity and synergistic effect. Fuel 234, 142-150.
Qi, J., Han, K., Wang, Q., Gao, J., 2017. Carbonization of biomass: Effect of additives on alkali metals residue, SO 2 and NO emission of chars during combustion. Energy 130, 560-569.
Rapagna, S., Gallucci, K., Foscolo, P.U., 2018. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass. Waste Management 71, 792-800.
Salaudeen, S.A., Acharya, B., Dutta, A., 2021. Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes. Renewable Energy 171, 582-591.
Savuto, E., May, J., Di Carlo, A., Gallucci, K., Di Giuliano, A., Rapagnà, S., 2020. Steam Gasification of Lignite in a Bench-Scale Fluidized-Bed Gasifier Using Olivine as Bed Material. Applied Sciences 10.
Schmid, M., Hafner, S., Biollaz, S., Schneebeli, J., Waizmann, G., Scheffknecht, G., 2021. Steam-oxygen gasification of sewage sludge: Reduction of tar, H2S and COS with limestone as bed additive. Biomass and Bioenergy 150.
Shahabuddin, M., Bhattacharya, S., 2021. Effect of reactant types (steam,CO2 and steam + CO2) on the gasification performance of coal using entrained flow gasifier. Energy Research 45, 9492-9501.
Shi, H., Si, W., Li, X., 2016. The concept, design and performance of a novel rotary kiln type air-staged biomass gasifier. Energies 9, 1-18.
Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N., Anthony, E.J., 2017. Progress in biofuel production from gasification. Progress in Energy and Combustion Science 61, 189-248.
Tian, Y., Zhou, X., Lin, S., Ji, X., Bai, J., Xu, M., 2018. Syngas production from air-steam gasification of biomass with natural catalysts. Science of the Total Environment 645, 518-523.
Tuan, P., Minh Q., L., Nhi, V.T., Huong, H.M., Le, T., Phung, K., Feng, D., 2022. Enrichment of hydrogen in product gas from a pilot-scale rice husk updraft gasification system. Carbon Resources Conversion 5, 231-239.
Vincenti, B., Gallucci, F., Paris, E., Carnevale, M., Palma, A., Salerno, M., Cava, C., Palone, O., Agati, G., Caputi, M.V.M., Borello, D., 2023. Syngas Quality in Fluidized Bed Gasification of Biomass: Comparison between Olivine and K-Feldspar as Bed Materials. Sustainability 15.
Wang, C., Zhao, L., Sun, R., Hu, Y., Tang, G., Chen, W.H., Du, Y., Che, D., 2019. Effects of silicon-aluminum additives on ash mineralogy, morphology, and transformation of sodium, calcium, and iron during oxy-fuel combustion of zhundong high-alkali coal. Greenhouse Gas Control 91.
Wu, D., Wang, Y., Wang, Y., Li, S., Wei, X., 2016. Release of alkali metals during co-firing biomass and coal. Renewable Energy 96, 91-97.
Xie, C., Liu, J., Liang, J., Xie, W., Evrendilek, F., Li, W., 2021. Optimizing environmental pollution controls in response to textile dyeing sludge, incineration temperature, CaO conditioner, and ash minerals. Science of the Total Environment 785, 147219.
Xu, G., Zou, J., Li, G., 2009. Stabilization/Solidification of Heavy Metals in Sludge Ceramsite and Leachability Affected by Oxide Substances. Environmental engineering technology 43, 5902–5907.
Yang, Z., Hu, J., Li, Y., Chen, Y., Qian, K., Yang, H., Chen, H., 2019. Catalytic steam gasification of Mengdong coal in the presence of iron ore for hydrogen-rich gas production. Energy Institute 92, 391-402.
Yaras, A., Demirel, B., Akkurt, F., Arslanoglu, H., 2021. Thermal conversion behavior of paper mill sludge: characterization, kinetic, and thermodynamic analyses. Biomass Conversion and Biorefinery, 2007-2016.
Zaccariello, L., Mastellone, M.L., 2023. Fuel Gas Production from the Co-Gasification of Coal, Plastic Waste, and Wood in a Fluidized Bed Reactor: Effect of Gasifying Agent and Bed Material. Sustainability 15.
行政院環境保護署, 2021. 109年事業廢棄物申報量統計報告.
行政院環境保護署, 2022. 110年事業廢棄物申報量統計報告.
行政院環境保護署, 2023. 111年事業廢棄物申報量統計報告.
科技部中部科學園區管理局, 2020. 2020永續報告書.
科技部中部科學園區管理局, 2021. 110年台中污水廠各處理單元之功能評估報告-廠內操作數據資料.
吳東翰,廢車破碎殘餘物與紙漿污泥共同氣化之可行性研究,國立中央大學環境工程研究所,碩士論文,2021
梁登凱,江康鈺,咖啡渣蒸氣氣化提升產能效率之可行性研究,中華民國環境工程學會2020廢棄物處理技術研討會,2020
薛凱澤,下水污泥與沼渣共同氣化產能效率及其污染物排放特性之研究,國立中央大學環境工程研究所,碩士論文,2022
指導教授 江康鈺 審核日期 2024-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明