以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:18.191.238.193
姓名 游竣翔(Jun-Xiang You) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 圓柱顆粒含量對顆粒潰壩崩塌流動之影響 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2028-7-31以後開放) 摘要(中) 本研究使用一長1.5公尺、寬0.1公尺、高1.0公尺的矩形玻璃流槽並使用氣壓缸進氣讓擋板快速抽離,讓事先填充好的顆粒柱模擬顆粒潰壩(dam-break)實驗,顆粒堆積柱在幾乎相同的初始寬高比(initial aspect ratio)下,使用不同長度的圓柱及改變圓柱含量占比來探討顆粒崩塌流運動狀態及流動性的影響。為了可觀察到顆粒崩塌的每一個特徵時間點的運動變化,使用高速攝影機並利用PIV技術(Particle image velocimetry)觀察顆粒崩塌流的運動變化及各特徵時間點下速度剖面的差異。
從實驗結果可知,當只含有少量圓柱顆粒時,因為圓球顆粒被替換成圓柱顆粒,整體的顆粒面積減少,但是圓柱顆粒因數量較少彼此距離較遠,顆粒互相牽引的特性此時並不明顯,並且因圓柱顆粒的存在破壞了顆粒堆積體的穩定結構,而造成了潤滑效果(lubrication effect),而使其崩塌距離較遠,流動性也變得更好,於8mm組實驗中,圓柱顆粒含量為5%時有最遠的崩塌距離,而12mm組實驗則是在25%時有最遠的崩塌距離;但是若再持續增加圓柱顆粒含量占比,圓柱顆粒互相牽引的特性會越來越明顯,反而會造成結垢效果(fouling effect),而使整體崩塌距離變短,流動性也變得較差。分析方面也藉由特定垂直斷面(δL/3+Li)的顆粒流動速度剖面來討論顆粒崩塌的速度變化,以及藉由改變圓柱含量占比來觀察對顆粒崩塌流流動性的增減。摘要(英) In this study, a rectangular glass chute with a length of 1.5 meters, a width of 0.1 meters, and a height of 1.0 meters was used, and a pneumatic cylinder was used to inhale the baffles quickly to allow the pre-filled particle columns to simulate a dam break experiment, under almost the same initial aspect ratio of the particle stacking column, using cylinders of different lengths and changing the content ratio of the column to investigate the impact of the particle collapse flow on the state of motion and fluidity. In order to observe the movement changes at each characteristic time point of the particle collapse, use a high-speed camera and use PIV technology (Particle image velocity) to observe the movement changes of the particle collapse flow and the difference in the velocity profile at each characteristic time point.
When only a small amount of cylindrical particles are contained, the particle area is reduced because the spherical particles are replaced by cylindrical particles, but due to the small number of cylindrical particles, the distance from each other is far away, and the characteristics of the particles′ mutual traction are not obvious, and because the existence of cylindrical particles destroys the stable structure of the particle accumulation, resulting in a lubrication effect, so that the collapse distance is longer, and the fluidity becomes better, In the 8mm experiment, when the cylindrical particle content is 5%, there is the farthest collapse distance, while in the 12mm experiment is 25%.; but if the cylindrical particles continue to increase, the characteristics of cylindrical particles pulling each other will become more obvious, which will cause fouling effect instead, shorten the collapse distance and make the fluidity worse. In terms of analysis, the particle flow velocity profile of a vertical section (δL/3+Li) is used to discuss the velocity change of the particle collapse, and to observe the fluidity of the particle collapse flow by changing the proportion of the column content.關鍵字(中) ★ 粒子流
★ 潰壩崩塌
★ 流動性
★ 潤滑
★ 顆粒形狀關鍵字(英) 論文目次 摘要........................................................................................................................i
Abstract………………………………………………………………………….ii
目錄……………………………………………………………………………..iii
圖目錄…………………………………………………………………………...v
表目錄…………………………………………………………………………..ix
符號目錄………………………………………………………………………...x
第一章 簡介…………………………………………………………………….1
1.1 前言……………………………………………………………………..1
1.2 顆粒崩塌流……………………………………………………………..2
1.3 顆粒的潤滑機制………………………………………………………..4
1.4 顆粒的結垢機制………………………………………………………..5
1.5 研究動機………………………………………………………………..6
第二章 實驗方法與原理……………………………………………………...13
2.1 實驗設備與材料………………………………………………………13
2.1.1 實驗設置………………………………………………………...13
2.1.2 實驗儀器設備…………………………………………………...13
2.1.3 顆粒材料………………………………………………………...14
2.2 實驗與分析方法………………………………………………………14
2.2.1 實驗方法………………………………………………………...14
2.2.2 實驗流程………………………………………………………...15
2.2.3 流場速度計算與分析…………………………………………...16
第三章 結果與討論…………………………………………………………...26
3.1 顆粒崩塌定量分析……………………………………………………26
3.1.1 崩塌流動歷程變化……………………………………………...26
3.1.2 崩塌流動層面積比較…………………………………………...29
3.1.3 流動層垂直厚度比較…………………………………………...30
3.1.4 崩塌最終流動距離……………………………………………...31
3.1.5 顆粒崩塌流動性比較…………………………………………...32
3.2 顆粒崩塌流場與速度分析……………………………………………33
3.2.1 速度場分析……………………………………………………...33
3.2.2 速度分布 ..33
3.2.3 速度剖面分析…………………………………………………...34
第四章 結論…………………………………………………………………...88
參考文獻…………………………………………………………………….....89參考文獻 [1] Campbell, C. S., and Brennen, C. E.,” Chute flows of granular material: some computer simulations”, Journal of Applied Mechanics, Vol.52,172-179,1985.
[2] Jaeger, H. M., and Nagel, S.R.,” Physics of the granular state”, Science, Vol.255,1523-1531,1992.
[3] Lube, G., Huppert, H.E., Sparks, R.S.J., and Freundt, A.,” Collapses of two-dimensional granular columns”, Physical Review E, 72, 041301, 2005.
[4] Lajeunesse, E., Monnier, J.B., and Homsy, G.M.,” Granular slumping on a horizontal surface”, Physics of Fluids, 17, 103302, 2005.
[5] Horacio, T.M., and Roberto, Z.,” Computer simulations of the collapse of columns formed by elongated grains”, Physical Review E, 85, 061304, 2012.
[6] Lube, G., Huppert, H.E., Sparks, R.S.J., and Freundt, A.,” Static and flowing regions in granular collapses down channels”, Physics of Fluids, 19, 043301, 2007.
[7] Artoni, R., Santomaso, A.C., Gabrieli, F., Tono, D., and Cola, S.,” Collapse of quasi-two-dimensional wet granular columns”, Physical Review E, 87, 032205, 2013.
[8] Rondon, L., Pouliquen, O., and Aussillous, P.,” Granular collapse in a fluid: Role of the initial volume fraction”, Physics of Fluids, 23, 073301, 2011.
[9] Pailha, M., Nicolas, M., and Pouliquen O.,” Initiation of underwater granular avalanches: Influence of the initial volume fraction”, Physics of Fluids, 20, 111701, 2008.
[10] Meruane, C., Tamburrino, A., and Roche, O.,” Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid”, Physical Review E, 86, 026311, 2012.
[11] Linares-Guerrero, E., Goujon, C., and Zenit, R.,” Increased mobility of bidisperse granular avalanches”, J. Fluid Mech, Vol.593,475-504,2007.
[12] Trepanier, M., and Franklin, S.V.,” Column collapse of granular rods”, Physical Review E, 82, 011308, 2010.
[13] Lube, G., Huppert, H.E., Sparks, R.S.J., and Hallworth, M.A.,” Axisymmetric collapses of granular columns”, J. Fluid Mech, Vol.508,175-199,2004.
[14] Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J.P.,” Spreading of a granular mass on a horizontal plane”, Physics of Fluids, 16, 2371, 2004.
[15] Phillips, J., Hogg, A., Kerswell, R., and Thomas, N.,” Enhanced mobility of granular mixtures of fine and coarse particles”, Earth and Planetary Science Letters, 246, 466-480, 2006.
[16] Staron, L., and Phillips, J.C.,” How large grains increase bulk friction in bi-disperse granular chute flows”, Computational Particle Mechanics, 2015.
[17] Stokely, K., Diacou, A., and Franklin, S.V.,” Two-dimensional packing in prolate granular materials”, Physical Review E, 67, 051302, 2003.
[18] Escudie, R., Epstein, N., Grace, J.R., and Bi, H.T.,” Effect of particle shape on liquid-fluidized beds of binary (and ternary) solids mixtures segregation vs. mixing”, Chemical Engineering Science, 61, 1528-1539, 2006.
[19] Boer, L., Buist, K.A., Deen, N.G., Padding, J.T., and Kuipers, J.A.M.,” Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds”, Powder Technology, 329, 332-334, 2018.
[20] Zhou, W., Xu, K., Ma, G., Yang, L., and Chang, X.,” Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state”, Granular Matter, 18:81, 2016.
[21] Nobach, H., and Tropea, C.,” Improvements to PIV image analysis by recognizing the velocity gradients”, Experiments in Fluids, 39, 612-620, 2005.
[22] Lee, C.F., and Chou, H.T.,” Falling process of a rectangular granular step”, Granular Matter, 13:39, 2011.
[23] Xu, X., Sun, Q., Jin, F., and Chen, Y.,”Measurements of velocity and pressure of a collapsing granular pile”, Powder Technology, 303, 147-155, 2016.
[24] Girolami, L., Hergault, V., Vinay, G., and Wachs, A.,” A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between
numerical results and experiments”, Granular Matter, 14(3), 381-392, 2012.
[25] Bonamy, D., Daviaud, F., and Laurent, L.,” Experimental study of granular surface flows via a fast camera: A continuous description”, Physics of Fluids, 14(5), 1666-1673, 2002.指導教授 蕭述三 審核日期 2023-8-11 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare