博碩士論文 110323105 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.145.65
姓名 許嘉晉(Chia-Chin Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法配合顆粒鍵接理論探討矽晶棒線切割物理機制
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-31以後開放)
摘要(中) 在現今製造業中,線切割技術已廣泛地應用於加工硬脆材料,如陶瓷、玻璃、藍寶石及矽晶錠。線切割的加工過程對於生產高品質的成品至關重要,然而加工過程也伴隨著一系列挑戰與問題,例如破損率的增加、材料表面品質的低劣、殘留應力的存在及加工參數的優化等。本研究第一次提出離散元素法(DEM)配合顆粒鍵接理論,探討線切割的破壞過程與物理機制,並有系統地研究加工參數對晶圓物理性質與表面性質的影響。透過此創新模擬方法,可分析刀具在加工過程承受的力量與力矩,加工後的材料移除率與晶圓表面品質(總厚度變化與翹曲度等),晶圓內部殘留應力、平均配位數及體積佔有率。為使模擬結果更接近實際物理系統,進行單向度壓縮實驗,並採用實驗設計法校正DEM微觀輸入參數。研究結果顯示:(1) 切割方向的表面總厚度變化(TTV)較進給方向均勻,切割方向的晶圓翹曲度(Warpage)較進給方向平整。(2) 隨著切割速度的增加,鋼琴線力量與力矩逐漸減少,而晶圓殘留應力與剝落率逐漸增加。且較高的切割速度,TTV表現較均勻,Warpage表現較平整。(3) 隨著進給速度的增加、鋼琴線力量、力矩及剝落率逐漸增加,而晶圓殘留應力逐漸減少。(4) 隨著速度比增加,鋼琴線力量與力矩逐漸增加,而殘留應力逐漸減少。(5) 晶棒尺寸與鋼琴線力量、力矩及晶圓殘留應力皆為正相關。
摘要(英) In today′s manufacturing industry, wire-sawing technology is widely applied in processing hard and brittle materials, such as ceramics, glass, sapphire, and silicon ingots. These processing techniques are crucial for producing high-quality products. However, the manufacturing process also comes with a series of challenges and problems, including increased damage rates, poor surface quality of materials, presence of residual stresses, and optimization of processing parameters. This study first proposes the coupled model of the Discrete Element Method (DEM) and particle bonding theory to investigate the physical mechanisms of wire sawing. The influence of processing parameters on the physical and surface properties of wafers was systematically explored. This innovative simulation approach provided insights into the behavior of the machining processes. The acquired physical properties included forces and moments on the wire, material removal rates, wafer surface quality (total thickness variation and warpage), internal residual stresses, coordination numbers, and solid volume fraction. To attain reasonable simulation results, uniaxial compression tests for bulk solids were conducted, and the methodology of Design of Experiment (DOE) was used to determine the microscopic input parameters for DEM.
Main research findings are summarized below: (1) The total thickness variation (TTV) is more uniform in the cutting direction than in the vertical direction, and the wafer warpage is flatter in the cutting direction; (2) As the sawing velocity increases, wire forces and moments gradually decrease, while wafer residual stresses and removal rates increase. Moreover, larger sawing velocities result in more uniform TTV and flatter warpage; (3) With the increase of feeding velocity, wire forces, wire moments, and removal rates gradually increase, while wafer residual stresses decrease; (4) An increase in the velocity ratio leads to a gradual increase in the wire forces and moments, but a decrease in the residual stresses; (5) The wire forces, wire moments, and wafer residual stresses generally increase with the size of the silicon ingot.
關鍵字(中) ★ 線切割
★ 離散元素法
★ 顆粒鍵接理論
★ 單向度壓縮試驗
★ 實驗設計法
★ 物理性質
關鍵字(英) ★ Wire sawing
★ DEM
★ Particle bonding theory
★ Uniaxial compression test
★ DOE
★ Physical property
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
一、 緒論 1
1-1 當今切割加工的背景與趨勢 1
1-2 現今矽晶棒切割的背景與趨勢 1
1-3 研究動機 4
二、 數值架構 6
2-1 離散元素法 6
2-1-1 運動方程式 6
2-1-2 接觸力模型-線性接觸模型 7
2-1-3 顆粒鍵接理論 9
2-1-4 時間步的決定-密度縮放法 10
2-2 實驗設計法 11
2-3 離散元素法模型與架構 13
2-4 內部性質 14
2-4-1 靜態量測法與動態量測法 14
1. 晶圓表面 15
2. 總厚度偏差 15
3. 翹曲度 16
4. 體積佔有率 16
5. 平均配位數 17
6. 殘留應力 17
三、 數值模型驗證 19
3-1 雙顆粒接觸鍵接正向拉力測試 19
3-2 雙顆粒接觸鍵接切向剪力測試 20
3-3 四顆粒接觸鍵接壓縮測試 21
四、 數值模型微觀參數決定 22
4-1 矽晶柱單向度壓縮破壞物理實驗與DEM模擬 22
4-2 試誤法縮小參數範圍 23
4-3 使用實驗設計法決定微觀參數 23
五、 結果與討論 26
5-1 關鍵因子的影響 26
5-2 setting2內部物理量 30
5-3 切割速度的影響 32
5-4 進給速度的影響 35
5-5 速度比的影響 37
5-6 晶棒尺寸的影響 40
六、 結論 43
參考文獻 44
附表 48
附圖 56
參考文獻 [1] H. Wu, Wire sawing technology: A state-of-the-art review, Precis. Eng., 43 (2016), 1-9.
[2] R. Rakshit, A.K. Das, A review on cutting of industrial ceramic materials, Precis. Eng., 59 (2019), 90-109
[3] H.J. Möller, Basic mechanisms and models of multi-wire sawing, Adv. Eng. Mater., (2004) 6, 501-513.
[4] A. Bidiville, K. Wasmer, J. Michler, P.M. Nasch, M. Van der Meer, C. Ballif, Mechanisms of wafer sawing and impact on wafer properties, Prog. Photovoltaics, (2010) 18, 563-572.
[5] A. Bidiville, K. Wasmer, M. Van der Meer, C. Ballif, Wire-sawing processes: parametrical study and modeling, Sol. Energy Mat. Sol. C., 132 (2015), 392-402.
[6] H. Wu, C. Yang, S.N. Melkote, Effect of reciprocating wire slurry sawing on surface quality and mechanical strength of as-cut solar silicon wafers, Precis. Eng., 38 (2013), 121-126.
[7] S. Schwinde, M. Berg, M. Kunert, New potential for reduction of kerf loss and wire consumption in multi-wire sawing, Sol. Energy Mat. Sol. C., 136 (2015), 44-47.
[8] T. Liedke, M. Kuna, A macroscopic mechanical model of the wire sawing process, Int. J. Mach. Tool. Manu., 51 (2011), 711-720.
[9] T. Liedke, M. Kuna, Discrete element simulation of micromechanical removal processes during wire sawing, Wear, 304 (2013), 77-82.
[10] B. Nassauer, A. Hess, M. Kuna, Numerical and experimental investigations of micromechanical processes during wire sawing, Int. J. Solids Struct., 51 (2014), 2656-2665.
[11] B. Nassauer, M. Kuna, Impact of micromechanical parameters on wire sawing a 3D discrete element analysis, Comput. Part. Mech., 2 (2015) , 63-71.
[12] N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, I. Sakata, Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire, Prog. Photovoltaics, (2010) 18, 485-490.
[13] A. Kumar, S. N. Melkote, Diamond wire sawing of solar silicon wafers a sustainable manufacturing alternative to loose abrasive slurry sawing, Procedia Manuf., 21 (2004), 549-566.
[14] W.I. Clark, A.J. Shih, C.W. Hardin, R.L. Lemaster, S.B. McSpadden, Fixed abrasive diamond wire machining - part I: process monitoring and wire tension force, Int. J. Mach. Tool. Manu., 43 (2003), 523-532.
[15] W.I. Clark, A.J. Shih, C.W. Hardin, R.L. Lemaster, S.B. McSpadden, Fixed abrasive diamond wire machining - part II experiment design and results, Int. J. Mach. Tool. Manu., 43 (2003), 533-542.
[16] C.W. Hardin, Fixed abrasive diamond wire saw slicing of single crystal SiC wafers and wood, MS thesis, North Carolina State University, (2003).
[17] C.W. Hardin, J. Qu, A.J. Shih, Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers, Mater. Manuf. Process., 7 (2007), 355-367.
[18] E. Teomete, Roughness damage evolution due to wire saw process, Int. J. Mach. Tool. Manu., (2011) 12, 941-947.
[19] S. Würzner, A. Falke, R. Buchwald, H. J. Möller, Determination of the impact of the wire velocity on the surface damage of diamond wire sawn silicon wafers, Energy Proced., 77 (2015), 881-890.
[20] Y. Gao, P. Ge, T. Liu, Experiment study on electroplated diamond wire saw slicing single-crystal silicon, Mat. Sci. Semicon. Proc., 56 (2016), 106-114.
[21] Y. Gao, P. Ge, L. Zhang, W. Bi, Material removal and surface generation mechanisms in diamond wire sawing of silicon crystal, Mat. Sci. Semicon. Proc., 103 (2019), 104642.
[22] T. Liu, P. Ge, W. Bi, Y. Gao, Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing, Mat. Sci. Semicon. Proc., 57 (2017), 147-156.
[23] X. Li, Y. Gao, P. Ge, L. Zhang, W. Bi, The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon, Mat. Sci. Semicon. Proc., 91 (2019), 316-326.
[24] X. Li, Y. Gao, Y. Yin, L. Wang, T. Pu, Experiment and theoretical prediction for surface roughness of PV polycrystalline silicon wafer in electroplated diamond wire sawing, J. Manuf. Process., 49 (2020), 82-93.
[25] J. Qiu, X. Li, R. Ge, S. Zhang, H. Wang, Formation mechanism of wire bow and its influence on diamond wire saw process and wire cutting capability, Int. J. Mech. Sci., 185 (2017), 105851.
[26] L. Wang, Y. Gao, X. Li, T. Pu, Y. Yin, Analytical prediction of subsurface microcrack damage depth in diamond wire sawing silicon crystal, Mat. Sci. Semicon. Proc., 112 (2020), 105015.
[27] L. Wang, Y. Gao, T. Pu, Y. Yin, Fracture strength of photovoltaic silicon wafers cut by diamond wire saw based on half-penny crack system, Eng. Fract. Mech., 251 (2021), 107717.
[28] Y. Yin, Y. Gao, L. Wang, L. Zhang, T. Pu, Analysis of crack-free surface generation of photovoltaic polysilicon wafer cut by diamond wire saw, Sol. Energy, 216 (2021), 245-258.
[29] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29 (1979), 47-65.
[30] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, Int. J. Rock Mech. Min., 41 (2004), 1329-1634.
[31] L. Verlet, Computer EXPERIMENTS on classical fluids. I. thermodynamical properties of lennard-jones molecules, Phys. Rev., 159 (1976), 98-103.
[32] PFC3D 6.0 Documentation, https://docs.itascacg.com/pfc600/pfc/docproject/index.html, Itasca, (2019).
[33] Y.H. Wang, S.C. Leung, A particulate-scale investigation of cemented sand behavior, Can. Geotech. J., 45 (2008), 29-44.
[34] L. Benvenuti, C. Kloss, S. Pirker, Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments, Powder Technol., 291 (2016), 456-465.
[35] C.J. Coetzee, Review: Calibration of the discrete element method, Powder Technol., 310 (2017), 104-142.
[36] M. Rackl, K.J. Hanley, A methodical calibration procedure for discrete element models, Powder Technol., 307 (2017), 73-83.
[37] J. Yoon, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, Int. J. Rock Mech. Min., 44 (2007), 871-889.
[38] P. Zhang, X. Sun, X. Zhou, Y. Zhang, Experimental simulation and a reliable calibration method of rockfill microscopic parameters by considering flexible boundary, Powder Technol., 396 (2022), 279-290.
[39] 江晁鏷, 以離散元素法配合顆粒鍵接理論探討矽晶圓研磨物理機制, 論文, 國立中央大學, 民國一零二年.
[40] B. Durakovic, Design of experiments application concepts examples State of the art, Period. Eng. Nat. Sci., 5 (2017), 421-439.
[41] D.C. Montgomery, Design and analysis of experiments, 8th edition, John Wiley & Sons Inc., (2013).
[42] K.A.M. Said, M.A.M. Amin, Overview on the Response Surface Methodology (RSM) in Extraction Processes, J. Appl. Sci. Eng., 2 (2015), 8-17.
[43] 葉怡成, 實驗計劃法-製程與產品最佳化, 五南圖書出版股份有限公司, 台北市, 民國九十年.
[44] P. Sahoo, T.K. Barman, ANN modelling of fractal dimension in machining, Mechatronics and Manufacturing Engineering, (2012), 159-226.
[45] B. Ait-Amir, P. Pougnet, A.E. Hami, Meta-Model Development, Embedded Mechatronic Systems 2, (2015), 151-179.
[46] silicon , https://reurl.cc/7MYgjl, MatWeb.
[47] FCC unit cell, https://zhuanlan.zhihu.com/p/28411848.
[48] Y.C. Chung, Z.H. Yang, C.K. Lin, Modelling micro-crack initiation and propagation of crystal structures with microscopic defects under uni-axial tension by discrete element method, Powder Technol., 315 (2017), 445-476.
[49] Y.C. Chung, C.W. Wu, C.Y Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model., 74 (2019), 540-568.
[50] Y.C. Chung, Granular stresses in granular flows subjected to different obstacles, Int. J. Mech. Sci., 247 (2023), 108190.
[51] P. Wang, P. Ge, Y Gao, W Bi, Prediction of sawing force for single-crystal silicon carbide with fixed abrasive diamond wire saw, Mat. Sci. Semicon. Proc., 63 (2017), 25-32.
[52] C. Zhang, Z. Dong, Y. Zhao, Z. Liu, S. Wu, J. Yamg, Sawing force prediction model and experimental study on vibration-assisted diamond wire sawing, Micromachines, (2022) 13, 2026.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2023-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明