以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:9 、訪客IP:3.133.107.176
姓名 王信傑(Xin-Jie Wang) 查詢紙本館藏 畢業系所 物理學系 論文名稱
(Hydrodynamics and spontaneous flow of active permeating polar gels)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 許多生物系統由嵌入被動流體中的活性纖維狀顆粒組成。例如,游 動的桿狀細菌和細胞皮質。這些系統的長期動力學在本研究中被建 模為活性滲透極性凝膠。該模型中的流體力學變量包括活性成分的 密度、動量密度以及指示纖維局部方向的導向場。在本論文的第一 部分中,使用廣義流體動力學理論推導出該系統的運動方程。在第 二部分中,我們將模型應用於一個具有橫向約束的準二維系統。類 似的單一組分活性凝膠模型已被用於解釋在匯合細胞單層中觀察到 的自發流動。我們的模型預測,當活性纖維的密度允許變化時,系 統中也會發生自發的振盪流動。 摘要(英) Many biological systems are composed of active filamentous particles embedded in a pas- sive fluid. Examples include swimming rod-shaped bacteria and cell cortex. The long-time dynamics of such systems are modeled in this work as active permeating polar gels. The density of active components, the momentum density, and the director field which indicates the local direction of the filaments are the hydrodynamic variables in this model. In the first part of this thesis, the equations of motion for this system using generalized hydrodynamic theory. In the second part of this thesis, we apply our model in a quasi two-dimension system with lateral confinement. Similar model for a one-component active gel has been applied to explain the observed spontaneous flow in confluent cell monolayers. Our model predicts that when the density of active filaments is allowed to vary, spontaneous oscillatory flow in the system can also happen. 關鍵字(中) ★ 軟物質
★ 流體動力學
★ 複雜系統關鍵字(英) ★ active soft matter
★ hydrodynamics
★ complex system論文目次 1 Introduction..........................................1
1.1 Active permeating polar gel ....................1
1.2 Actin cortex....................................2
1.3 Biofilm.........................................2
1.4 Motivation......................................3
2 Formulating the theory 5
2.1 Conservation laws and broken symmetry variables.6
2.1.1 Mass and Momentum conservation .............6
2.1.2 Broken symmetry variables...................7
2.2 The entropy production and the constitutive
relations.......................................8
2.3 Maxwell model for elastic stress ...............14
2.4 Solving the Lagrange multiplier h0 .............16
2.5 Osmotic pressure ...............................19
2.5.1 An additional term in momentum equation. . .19
2.5.2 Solving the pressure in the system..........20
2.6 Linearized dynamics ............................21
2.6.1 Momentum equation ..........................21
2.6.2 Density evolution...........................26
2.6.3 Director dynamics ..........................27
2.7 Remormalized the coefficients ..................27
3 Spontaneous flow in two-dimensional confined systems..31
3.1 2-D system .....................................31
3.2 Solving the equations of motion ................33
3.3 Result..........................................35
3.3.1 Contractility dominant activities ..........36
3.3.2 Birth-death dominant activities ............38
4 Conclusion............................................41參考文獻 [1] T. T. Han, et al., Self-organized stress patterns drive state transitions in actin cortices. Sci. Adv., 4, 2847, 2018.
[2] R. A. Zen ́on, Theory of cell membrane-cortex adhesion dynamics. Master thesis, Univer- sitat de Barcelona, 2012.
[3] M. Krsmanovic, et al., Hydrodynamics and surface properties influence biofilm prolifera- tion. Adv. Colloid Interface Sci., 288, 102336, 2021.
[4] A. C. Callan-Jones and F. Ju ̈licher, Hydrodynamics of active permeating gels. New J. Phys., 13, 093027, 2011.
[5] J. F. Joanny, K. Kruse, J. Prost, S. Ramaswamy, The actin cortex as an active wetting layer. Eur. Phys. J E, 36, 52, 2013.
[6] R. Voituriez et al., Spontaneous flow transition in active polar gels, Europhys. Lett. 70, 404, 2005.
[7] A. G. McDonnell, et al., ADMiER-ing thin but complex fluids. Proc. of SPIE, 8204, 82040I, 2011.
[8] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993.
[9] de Groot and Mazur, Non-equilibrium thermodynamics, Dover Publications, New York, 1962.
[10] L. D. Landau, E. M. Lifshitz, Statistical Physics, Oxford University Press, Oxford, 1969.
[11] M. E. Cates, Active field theory, in Active matter and nonequilibrium statistical physics, edited by G. Gompper, M. C. Marchetti, J. Tailleur, J. M. Yeomans, and C. Salomon, Oxford University Press, New York, 2022.
[12] M. L. Blow, S. P. Thampi, and J. M. Yeomans, Biphasic, Lyotropic, active nematics. Phys. Rev. Lett. 113, 248303, 2014.
[13] S. Zhou et al, Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment. New J. Phys. 19 055006, 2017.
[14] K. S. Ro, J. B. Neethling, Biofilm density for biological fluidized beds. J. - Water Pollut. Control Fed., 63, 815, 1991.
[15] P. Monzo, et al., Adaptive mechanoproperties mediated by the formin FMN1 character- ize glioblastoma fitness for invasion. Dev. Cell, 565, 2841, 2021.
[16] P. S. Stewart, J. Bacteriol, 185, 1485, 2003.
[17] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J. F. Joanny, J. Prost, P. Silberzan, Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14, 728, 2018.
[18] M. C. Marchetti, J. -F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and R. Aditi Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143, 2013.
[19] M. Doi, Soft Matter Physics. Oxford University Press, Oxford, 2013.指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2024-7-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare