English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42708500      線上人數 : 1492
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/11978


    題名: 高斯數值積分在選擇權評價上的應用研究;Fast Accurate Option Valuation Using Gaussian Quadrature
    作者: 柯坤義;Kun-Yi Ko
    貢獻者: 財務金融研究所
    關鍵詞: 數值積分;新奇選擇權;GARCH 模型;選擇權評價;option pricing;GARCH model;exotic option;numerical quadrature
    日期: 2003-06-03
    上傳時間: 2009-09-22 14:36:34 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: I 本論文應用數值積分方法來迅速且正確地評價選擇權的價值。吾人所建議的數 值積分方法為高斯數值積分,因為其能達到數值積分的最高階次,所以可以非 常逼近真實的選擇權價格。高斯數值積分的理念在於它不僅能夠選擇積分點的 權重同時也能自由地決定積分點的位置,因此在同樣的積分點數之下,高斯數 值積分的收斂階次將會是辛普森法的兩倍。數值結果顯示,本方法可以應用在 非常廣泛的選擇權類型上同時也能應用在不同的標的資產演化過程上。利用本 方法,我們將能進一步萃取市場上美式選擇權或其他新奇選擇權的隱含波動度以從事更進一步的研究。 This paper develops an efficient and accurate method for numerical evaluation of the integral equations in option pricing problems. We suggest using the Gaussian quadratures, the highest order method in numerical integration, to approximate the option values. The idea of Gaussian quadratures is to give ourselves the freedom to choose not only the weight coefficients, but also the location of the abscissas at which the function is evaluated. It turns out that we can achieve Gaussian quadrature formulas whose convergence order is, essentially, twice that of Newton-Cotes formula (such as the Simpson's rule) with the same number of points. The numerical results are extremely well for a broa d range of options and underlying asset price processes. With this powerful tool, it would be possible to extract information such as implied volatility from the market prices of American options and other exotic options.
    顯示於類別:[財務金融研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明