中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/2090
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42691490      線上人數 : 1515
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/2090


    題名: 奇異項重建法在二維聲場邊界元素分析之應用;Singularity-Term Reconstruction for Boundary Element Analysis of Two-Dimensional Acoustic Problems
    作者: 李訓良;Hsun-Liang Lee
    貢獻者: 機械工程研究所
    關鍵詞: 邊界元素法;奇異項重建法;奇異性;Singularity-Term Reconstruction Method;Boundary Element Method;Singularity
    日期: 2002-06-27
    上傳時間: 2009-09-21 11:38:07 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在傳統的工程問題上,求解邊界積分式時,會遇到源點與場點重合所產生的奇異性問題,而在方程式係數矩陣的對角線項產生誤差。一般要解決這個問題都必須用到複雜的方程式及數學推導,使得程式設計的過程非常繁瑣。 本文提出奇異項重建法, 在振動體內部任意取兩個簡單點聲源,以該聲源所產生的邊界上聲壓與速度的理論值,作為方程式的已知值,得到兩組聯立方程式,逆算產生方程式中對角線奇異項的係數,完成方程式的係數矩陣,用以計算所要分析的未知聲場。本文以二維聲波場的放射與散射為實例,邊界上使用三節點二次式等參元素,所得到的數值解與解析解相比較均極為準確,證實此方法用在聲學問題上,為一有效且可靠的數值方法。 The purpose of this study is to handle the well-known singularity problems of Boundary Integral Equation. This study presents the application of singularity-term reconstruction method. By using known vibrating boundary conditions, which are gotten by setting two simple point sources in the vibration body, we get the singularity-terms without using complicated formulations. The two-dimensional acoustic radiation and scattering problems were tested. The three-noded curvilinear elements were adopted. The numerical results are very accurate compared to analytical solutions. It is proved that this method is an efficient and reliable numerical method in handling the acoustic problems.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明