English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42678101      線上人數 : 1266
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/25739


    題名: 土星系統裡的中性分子雲之結構與動力學;The Structure and Dynamics of the Neutral Cloud in the Saturnian System
    作者: 曾瑋玲;Wei-Ling Tseng
    貢獻者: 天文研究所
    關鍵詞: 土星環;磁球層;電漿;泰坦;外氣層;土星;Saturn;rings;magnetosphere;plasma;Titan;exosphere
    日期: 2009-10-19
    上傳時間: 2010-06-11 16:06:16 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 從1980年代的航海家太空船觀測,接下來的哈伯太空望遠鏡的觀測,以及最近的卡西尼號太空船的觀測,我們已經知道土星系統沉浸在一大片的中性分子氣體雲裡面,大部分是水分子以及其分解過後的產物,例如氫氧根分子、氧原子與氫原子。絕大多數的中性氣體都是由土衛(二)—恩斯拉達斯南極的冰噴泉機制所噴出的,以及少部分是由其他冰質衛星所貢獻的。另外,土星的環系統也是氧分子與氧原子的重要來源之一,而這些氧分子可以藉由離子—中性分子的碰撞作用產生,進而被彈射到土星磁球層的外圍區域。土衛(六)—泰坦的大氣層也是另一個提供中性分子的重要來源,包含氫分子(原子)、甲烷和氮氣。這些中性分子被游離之後,都是土星磁球層裡電漿成分。在這項研究工作中,我們利用數值模擬方法和卡西尼觀測中最新的電漿環境資訊,來了解這些分子雲氣的結構和成分。 本研究第一部分,是建立模型來了解環系統的氧氣大氣層和離子球層之結構與季節性的變化。模擬中有考慮到離子—中性分子的碰撞作用之電荷交換。因此,環系統的大氣分子可以進入到土星磁球層的外圍區域,而成為氧離子的來源之一。我們的研究結果,顯示如果環系統的氧氣主要是由光分解作用得到的話,則在土星春秋分的季節時,磁球中的氧離子會幾乎消失。 第二部分則是檢驗環系統大氣另一種質量來源,是否會對其結構或是季節性變化有何影響。由恩斯拉達斯而來的中性分子和電漿成分,有可能藉由冰微粒表面化學作用而還原成氧分子。如果這樣來源機制有可能比光分解還有效率的話,則環系統的大氣與離子球層可能不會隨著太陽照射仰角改變而有變化。然而,由其他冰質衛星產生的氧分子,相對於由環系統產生經由散射作用到磁球層外圍區域的比例,可能僅有少許的貢獻。 第三部分則是關於泰坦大氣層與土星磁球層電漿的交互作用。從卡西尼的觀測,我們知道磁場的結構與電漿流場是非常複雜多變的。我們採用合作者的磁流體力學模擬的電漿資料,來研究泰坦的撿拾離子的流量之空間變化,以及關於H2+,CH4+,N2+離子在泰坦外氣層底的能量沉積量之計算。這模擬結果還包含四個不同的泰坦公轉軌道位置。 最後,我們探討有關從泰坦大氣層逃逸出來的氫原子,在土星系統中的分布,隨著土星的季節變化之模擬結果。從前人的研究,已知氫原子的分布,會因太陽輻射壓力而呈現不對稱的形狀。另外,由卡西尼太空船所攜帶的紫外線光譜成像儀(UVIS)之觀測結果,顯示出土星的大氣層也可能是土星系統中的氫原子之重要來源。 From HST observations, Voyager flyby measurements and the Cassini in-situ measurements, we have learned that the Saturnian system is immersed in a vast neutral gas cloud of oxygen molecules, water molecules and their photodissociative products like OH, O and H. Most of the gas molecules originate from the plumes in the south pole of Enceladus plus some small contribution from other inner icy satellites. In addition, the ring system is an important source of oxygen atoms and molecules which can be injected into the distant Saturnian magnetosphere via scattering processes. Titan’s exosphere is another major source contributing neutral gas like H2 and H, and probably also CH4 and N2. These neutral materials will be fed into the thermal plasma disk in the inner Saturnian magnetosphere. In this work, the model calculations have been performed to simulate the structures and compositions of the neutral gas clouds of different origins making use of an updated photochemical and plasma chemistry model based on the latest plasma measurements from Cassini CAPS instrument. The present modeling efforts have first led to the picture that an exospheric population of neutral oxygen molecules can be maintained in the vicinity of the main rings by means of photolytic decomposition of ice and other surface reactions. The momentum exchange effect via charge exchange collisions has been taken into consideration in the computation. The ring atmosphere, therefore, serves as a source of O2+ ions throughout Saturn’s magnetosphere. By the same token, our results also show that the magnetopheric O2+ ions should be nearly depleted at Saturn’s equinox if O2 is produced mainly by photolysis of the ring material. Secondly, we have examined the mass budget of the ring oxygen atmosphere of Saturn taking into account of the possibility of an “exogenic” source i.e. Enceladus’ neutral gas cloud. The maximum O2 source rate from recycling of Enceladus-originated plasma and neutrals might be comparable to the maximum value from photolytic decomposition of the icy ring particles. In this case, the neutral O2 source rate in the Saturnian magnetosphere would be independent of the solar insolation angle. It is also shown that the O2 source from other inner icy satellites is smaller comparable to the scattered O2 component of ring-origin. The third part of our work is about Titan’s exospheric interaction with the corotating magnetospheric plasma. From the Cassini observations, we know that the magnetic field configuration and plasma flow field are highly variable. We have employed the numerical results of the three dimensional MHD simulation of Kopp and Ip (2001) to study possible spatial and temporal variations in the pickup ion influx. The computation of the ion influx and energy deposit into Titan’s exobase for the H2+, CH4+ and N2+ pickup ions separately are shown. The model results of four different Titan’s orbital locations are also presented. Finally, we consider the distribution of hydrogen atoms escaping from Titan due to the long-term perturbation effects of the solar radiation pressure and planetary oblateness as Saturn orbits Sun.
    顯示於類別:[天文研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML580檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明